cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A221079 E.g.f.: Sum_{n>=0} arctanh(n*x)^n/n!.

Original entry on oeis.org

1, 1, 4, 29, 384, 8009, 222272, 8007621, 368537600, 20666061201, 1382898312192, 109329652877037, 10019611878850560, 1051350493309688025, 125329539339246256128, 16802547359327516681109, 2513955132693623215226880, 417301267683794684221354785
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 29*x^3/3! + 384*x^4/4! + 8009*x^5/5! + ...
where
A(x) = 1 + arctanh(x) + arctanh(2*x)^2/2! + arctanh(3*x)^3/3! + arctanh(4*x)^4/4! + arctanh(5*x)^5/5! + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, atanh(m*X)^m/m!); n!*polcoeff(Egf, n)}
    for(n=0,20,print1(a(n),", ") )
    
  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, log(sqrt((1+m*x)/(1-m*X)))^m/m!); n!*polcoeff(Egf, n)}
    for(n=0,20,print1(a(n),", ") )

Formula

E.g.f.: Sum_{n>=0} log( sqrt((1+n*x)/(1-n*x)) )^n / n!.

A218260 E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh((2*k-1)*x).

Original entry on oeis.org

1, 1, 6, 88, 2280, 92416, 5393376, 428428288, 44450655360, 5836916064256, 946245183223296, 185613384522661888, 43330332249288714240, 11871318610487327850496, 3772031142226151742038016, 1375871976238663365598117888
Offset: 0

Views

Author

Paul D. Hanna, Oct 24 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 88*x^3/3! + 2280*x^4/4! + 92416*x^5/5! +...
where
A(x) = 1 + tanh(x) + tanh(x)*tanh(3*x) + tanh(x)*tanh(3*x)*tanh(5*x) + tanh(x)*tanh(3*x)*tanh(5*x)*tanh(7*x) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh((2*k-1)*X)));n!*polcoeff(Egf,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} Product_{k=1..n} (1 - exp(-2*(2*k-1)*x)) / (1 + exp(-2*(2*k-1)*x)).
a(n) ~ 2^(4*n+7/2) * n^(2*n+1) / (exp(2*n) * Pi^(2*n+1)). - Vaclav Kotesovec, Nov 02 2014
Showing 1-2 of 2 results.