cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221142 Fourth-order spt function.

Original entry on oeis.org

0, 0, 0, 1, 9, 45, 166, 505, 1341, 3223, 7149, 14916, 29480, 55902, 101892, 180245, 309297, 518859, 849563, 1366441, 2154789, 3348972, 5119981, 7733835, 11520100, 16985374, 24746334, 35735413, 51073008, 72432093, 101794713, 142085314, 196744665, 270764547
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    om[4, p_List] := Module[{pu, m, f}, pu = Union[p]; m = Length[pu]; f[j_] := Count[p, pu[[j]]]; Binomial[f[1] + 3, 7] + Binomial[f[1] + 2, 5] Sum[Binomial[f[j] + 1, 2], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 2, 4], {j, 2, m}] + f[1] Sum[Binomial[f[j] + 3, 6], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 2, 4] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 2, 4], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2] Binomial[f[r] + 1, 2], {j, 2, m}, {k, j + 1, m}, {r, k + 1, m}]];
    spt[4, n_] := Sum[om[4, p], {p, IntegerPartitions[n]}];
    Table[spt[4, n], {n, 1, 35}] (* Jinyuan Wang, Aug 08 2021 *)

Extensions

More terms from Jinyuan Wang, Aug 08 2021