A221142 Fourth-order spt function.
0, 0, 0, 1, 9, 45, 166, 505, 1341, 3223, 7149, 14916, 29480, 55902, 101892, 180245, 309297, 518859, 849563, 1366441, 2154789, 3348972, 5119981, 7733835, 11520100, 16985374, 24746334, 35735413, 51073008, 72432093, 101794713, 142085314, 196744665, 270764547
Offset: 1
Keywords
Links
- F. G. Garvan, Higher-order spt functions, preprint.
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265.
Programs
-
Mathematica
om[4, p_List] := Module[{pu, m, f}, pu = Union[p]; m = Length[pu]; f[j_] := Count[p, pu[[j]]]; Binomial[f[1] + 3, 7] + Binomial[f[1] + 2, 5] Sum[Binomial[f[j] + 1, 2], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 2, 4], {j, 2, m}] + f[1] Sum[Binomial[f[j] + 3, 6], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 2, 4] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 2, 4], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2] Binomial[f[r] + 1, 2], {j, 2, m}, {k, j + 1, m}, {r, k + 1, m}]]; spt[4, n_] := Sum[om[4, p], {p, IntegerPartitions[n]}]; Table[spt[4, n], {n, 1, 35}] (* Jinyuan Wang, Aug 08 2021 *)
Extensions
More terms from Jinyuan Wang, Aug 08 2021