A221178 Union of (prime powers minus 1) and values of Euler totient function.
0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1
Keywords
Programs
-
Mathematica
max = 200; selNu = Select[Range[max], PrimeNu[#] == 1&]-1; phiQ[m_] := Select[Range[m+1, 2*m*Product[1/(1-1/(k*Log[k])), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m&, 1] != {}; selPhi = Select[Range[max], phiQ]; Join[{0}, Union[selNu, selPhi]]
-
PARI
list(lim)=my(P=1, q, v, u=List([0])); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2,sqrtint(lim\1+1),P=p;while((P*=p) <= lim+1, listput(u, P-1))); vecsort(concat(v, Vec(u)),,8) \\ Charles R Greathouse IV, Jan 08 2013
Extensions
Edited by N. J. A. Sloane, Jan 06 2013