cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221178 Union of (prime powers minus 1) and values of Euler totient function.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Views

Author

Jean-François Alcover, Jan 06 2013

Keywords

Crossrefs

Cf. A000010, A002202, A000961, A181062, A070932 (multiplicative closure).

Programs

  • Mathematica
    max = 200;
    selNu = Select[Range[max], PrimeNu[#] == 1&]-1;
    phiQ[m_] := Select[Range[m+1, 2*m*Product[1/(1-1/(k*Log[k])), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m&, 1] != {};
    selPhi = Select[Range[max], phiQ];
    Join[{0}, Union[selNu, selPhi]]
  • PARI
    list(lim)=my(P=1, q, v, u=List([0])); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2,sqrtint(lim\1+1),P=p;while((P*=p) <= lim+1, listput(u, P-1))); vecsort(concat(v, Vec(u)),,8) \\ Charles R Greathouse IV, Jan 08 2013

Formula

Union of A181062 and A002202.

Extensions

Edited by N. J. A. Sloane, Jan 06 2013