A221284 Numbers n such that phi(m) = n^2 for some m.
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 74, 80, 84, 88, 90, 94, 96, 100, 104, 108, 110, 112, 114, 116, 120, 124, 126, 128, 130, 132, 134, 136, 140, 144, 146, 148, 150, 156, 160, 162, 168, 170
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- W. D. Banks, J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, Multiplicative structure of values of the Euler function, in High primes and misdemeanours: Lectures in honour of the sixtieth birthday of Hugh Cowie Williams, Fields Inst. Comm. 41 (2004), pp. 29-47.
- Paul Pollack and Carl Pomerance, Square values of Euler's function, Bulletin of the London Mathematical Society 46:2 (April 2014), pp. 403-414.
Programs
-
Mathematica
inversePhiSingle[(m_)?EvenQ] := Module[{p, nmax, n}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p-1)); n = m; While[n <= nmax, If[EulerPhi[n] == m, Return[n]]; n++]; 0]; Reap[For[k = 1, k <= 200, k = k + If[k==1, 1, 2], If[inversePhiSingle[k^2] > 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 11 2018 *)
-
PARI
is(n)=istotient(n^2)
Formula
a(n) = sqrt(A221285(n)).
Pollack and Pomerance show that n (log n)^0.0063 << a(n) << n (log n)^3.