cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A221285 Square values taken by totient function phi(m) = A000010(m).

Original entry on oeis.org

1, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 576, 676, 784, 900, 1024, 1296, 1600, 1764, 1936, 2304, 2500, 2704, 2916, 3136, 3600, 4096, 4356, 4624, 4900, 5184, 5476, 6400, 7056, 7744, 8100, 8836, 9216, 10000, 10816, 11664, 12100, 12544, 12996, 13456, 14400, 15376, 15876
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    inversePhiSingle[(m_)?EvenQ] := Module[{p, nmax, n}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; While[n <= nmax, If[EulerPhi[n] == m, Return[n]]; n++]; 0];
    Reap[For[k = 1, k <= 200, k = k + If[k==1, 1, 2], If[inversePhiSingle[k^2] > 0, Print[k^2]; Sow[k^2]]]][[2, 1]] (* Jean-François Alcover, Dec 11 2018 *)
  • PARI
    is(n)=issquare(n) && istotient(n)

Formula

A002202 INTERSECTION A000290.
a(n) = A221284(n)^2.
Pollack & Pomerance show that n^2 log^.0126 n << a(n) << n^2 log^6 n.

A228061 Numbers k such that k^2 = sigma(m) for some m.

Original entry on oeis.org

1, 2, 6, 11, 12, 16, 18, 20, 24, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 62, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 112, 114, 120, 124, 126, 128, 132, 136, 140, 144, 150, 152, 154, 156, 160, 162, 164, 168, 172, 174
Offset: 1

Views

Author

T. D. Noe, Sep 04 2013

Keywords

Crossrefs

Cf. A000203, A038688 (squares of these numbers).
Cf. A221284 (similar numbers for the phi function).

Programs

  • Mathematica
    nn = 40000; t = Select[Union[DivisorSigma[1, Range[nn]]], IntegerQ[Sqrt[#]] &]; t = Sqrt[t]; t = Select[t, # < Sqrt[nn] &]
    With[{nn=50000},Union[Select[Sqrt[DivisorSigma[1,Range[nn]]],IntegerQ[ #] && #<=Sqrt[nn]&]]] (* Harvey P. Dale, Jul 12 2021 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(invsigmaNum(k^2) > 0, print1(k, ", "))); \\ Amiram Eldar, Aug 12 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = sqrt(A038688(n)).

A306722 Number of pairs of primes (p,q), p < q, which are a solution of the Diophantine equation (p-1)*(q-1) = (2n)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 0, 3, 1, 1, 1, 1, 0, 3, 0, 3, 1, 1, 0, 3, 1, 1, 4, 3, 0, 3, 0, 1, 4, 0, 1, 3, 1, 0, 0, 3, 0, 3, 0, 1, 4, 0, 1, 3, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 5, 0, 1, 4, 0, 1, 4, 1, 0, 0, 4, 0, 6, 1, 1, 4, 0, 0, 5, 0, 4, 1
Offset: 1

Views

Author

Bernard Schott, Mar 06 2019

Keywords

Comments

a(n) is also the number of semiprimes p*q whose totient is a square (A247129) and equal to (2*n)^2.
From Robert G. Wilson v, Mar 30 2019, Mar 30 2019: (Start)
First occurrence of k=1,2,3,...: 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, ..., . = A307245.
Start of table:
a(k_i) = n:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
n\
0 11 17 19 23 29 31 34 38 39 41 43 46 49 51 53 ...
1 1 2 4 5 7 8 9 13 14 15 16 21 22 25 26 ...
2 3 6 54 56 58 87 100 115 116 123 138 148 160 170 176 ...
3 10 12 18 20 24 28 30 36 40 42 48 84 88 99 144 ...
4 27 33 45 63 66 70 75 80 112 126 135 153 156 162 165 ...
5 60 78 90 102 140 168 200 260 264 285 288 315 378 408 432 ...
6 72 105 108 130 150 306 348 357 450 495 528 560 672 696 708 ...
7 120 132 240 297 312 330 390 588 750 882 980 1140 1176 1190 1215 ...
8 180 198 210 280 396 468 540 612 648 700 810 910 945 960 1020 ...
9 270 420 660 858 918 990 1248 1620 1782 1920 2088 2184 2352 2376 2688 ...
... (End).
If n is a prime <> 3, then a(n) = 1 if n is in A052291 and 0 otherwise, and a(n^2) = 1 if 2*n+1 and 2*n^3+1 are primes and 0 otherwise. - Robert Israel, Apr 04 2019

Examples

			a(2) = 1 because (2*2)^2 = (2-1) * (17-1), also, phi(2*17) = 4^2.
a(3) = 2 because (2*3)^2 = (2-1) * (37-1) = (3-1) * (19-1), also, phi(2*37) = phi(3*19) = 6^2.
a(11) = 0  because (2*11)^2 can't be written as (p-1)*(q-1) with p < q.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local w;
      w:= (2*n)^2;
      nops(select(t -> t < 2*n and isprime(t+1) and isprime(w/t + 1),  numtheory:-divisors(w)))
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 04 2019
  • Mathematica
    f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# + 1] && PrimeQ[ 4n^2/# + 1] &]; Array[f, 81] (* Robert G. Wilson v, Mar 30 2019 *)
  • PARI
    a(n) = {my(nb = 0, nn = 4*n^2); fordiv(nn, d, if (d == 2*n, break); if (isprime(d+1) && isprime(nn/d+1), nb++);); nb;} \\ Michel Marcus, Mar 06 2019

A306882 Even numbers k such that phi(m) = k^2 has no solution.

Original entry on oeis.org

22, 34, 38, 46, 58, 62, 76, 78, 82, 86, 92, 98, 102, 106, 118, 122, 138, 142, 152, 154, 158, 164, 166, 172, 178, 182, 190, 194, 202, 212, 214, 218, 226, 238, 244, 254, 258, 262, 266, 274, 278, 282, 298, 302, 304, 310, 316, 318, 322, 328, 332, 334, 338, 344, 346, 356, 358, 362
Offset: 1

Views

Author

Bernard Schott, Mar 15 2019

Keywords

Comments

In the link, P. Pollack and C. Pomerance "show that almost all squares are missing from the range of Euler's phi-function".
Except for m=1 and m=2, phi(m) is always even, so, the odd numbers >= 3 are not included in the data for clarity.
Includes 2*p if p is a prime not in A052291. - Robert Israel, Apr 10 2019

Examples

			phi(489) = 18^2, phi(401) = 20^2, phi(577) = 24^2, phi(677) = 26^2, but there is no integer m such that phi(m) = 22^2 = 484.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-invphi(t^2)=[], [seq(i,i=2..400,2)]);  # Robert Israel, Apr 10 2019
  • PARI
    isok(n) = !(n%2) && !istotient(n^2); \\ Michel Marcus, Mar 15 2019
Showing 1-4 of 4 results.