A221309 Numbers m such that no subset of {m-1, m, m+1} sums up to a prime number.
25, 77, 85, 92, 93, 94, 118, 122, 123, 124, 133, 143, 144, 145, 160, 161, 170, 171, 185, 188, 202, 203, 206, 207, 208, 213, 214, 218, 235, 236, 237, 247, 248, 253, 259, 265, 266, 267, 275, 287, 290, 291, 295, 298, 302, 305, 319, 325, 328, 333, 334, 335, 340
Offset: 1
Keywords
Examples
a(1) = 25: there are 7 nonempty subsets of {25-1, 25, 25+1}: {24}, {25}, {26}, {24,25}, {24,26}, {25,26} and {24,25,26} with sums and factorizations: 24=3*2^3, 25=5^2, 26=13*2, 49=7^2, 50=5^2*2, 51=17*3 and 75=5^2*3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A079364.
Programs
-
Haskell
a221309 n = a221309_list !! (n-1) a221309_list = map (+ 1) $ elemIndices 0 a117499_list
-
Mathematica
Flatten@Position[ Plus @@ # & /@ (Rest@Subsets[# + {-1, 0, 1}]) & /@ Range@340, {?(! PrimeQ@# &) ..}] (* _Hans Rudolf Widmer, Oct 26 2024 *)
Comments