cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A218663 T(n,k) = Hilltop maps: number of n X k binary arrays indicating the locations of corresponding elements not exceeded by any king-move neighbor in a random 0..1 n X k array.

Original entry on oeis.org

1, 3, 3, 5, 15, 5, 9, 57, 57, 9, 17, 225, 417, 225, 17, 31, 891, 3249, 3249, 891, 31, 57, 3519, 25533, 50625, 25533, 3519, 57, 105, 13905, 199489, 793881, 793881, 199489, 13905, 105, 193, 54945, 1560161, 12383361, 24879489, 12383361, 1560161, 54945
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2012

Keywords

Comments

From Andrew Howroyd, May 10 2017: (Start)
Number of n X k binary matrices with every 1 adjacent to some 0 horizontally, vertically, diagonally or antidiagonally.
Number of dominating sets in the n X k king graph. (End)

Examples

			Table starts
....1........3...........5...............9.................17
....3.......15..........57.............225................891
....5.......57.........417............3249..............25533
....9......225........3249...........50625.............793881
...17......891.......25533..........793881...........24879489
...31.....3519......199489........12383361..........775176415
...57....13905.....1560161.......193349025........24176619049
..105....54945....12202673......3018953025.......754066017977
..193...217107....95434773.....47135449449.....23517838102321
..355...857871...746388537....735942652641....733484062428443
..653..3389769..5837454753..11490533873361..22876204302519509
.1201.13394241.45654295713.179405691966081.713472099034206097
...
Some solutions for n=3 k=4
..1..1..1..0....1..0..1..1....0..1..0..1....0..1..1..0....1..0..0..0
..0..1..0..0....0..0..0..0....1..0..0..1....0..0..1..1....0..0..1..1
..0..1..0..1....1..1..0..1....0..1..1..1....1..1..0..1....1..1..0..0
		

Crossrefs

Columns 1-7 are A000213(n+1), A218657, A218658, A218659, A218660, A218661, A218662.
Diagonal is A133791.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +3*a(n-3)
k=3: a(n) = 6*a(n-1) +11*a(n-2) +26*a(n-3) -5*a(n-4) -5*a(n-6)
k=4: a(n) = 12*a(n-1) +45*a(n-2) +180*a(n-3) -27*a(n-4) -81*a(n-6)
Columns k=1..z+1 for an underlying 0..z array: a(n) = sum(i=1..2z+1){(2^k-1)*a(n-i)} checked for z=1..3.

A221439 Hilltop maps: number of n X n binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 n X n array.

Original entry on oeis.org

1, 9, 221, 18393, 6415089, 8569227073, 43045366565233, 827667742380908273, 60943705772313538144913, 17137605013408451421126281145, 18409652574456111249919293718583541
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Diagonal of A221446

Examples

			Some solutions for n=3
..1..1..1....1..0..1....0..1..0....1..1..0....0..1..0....1..1..1....1..0..0
..0..0..1....1..0..0....1..1..0....0..1..0....1..0..1....1..1..0....1..1..1
..1..1..0....0..1..1....1..1..0....0..1..0....1..1..0....1..1..0....0..1..1
		

A221440 Hilltop maps: number of n X 2 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 n X 2 array.

Original entry on oeis.org

3, 9, 31, 105, 355, 1201, 4063, 13745, 46499, 157305, 532159, 1800281, 6090307, 20603361, 69700671, 235795681, 797691075, 2698569577, 9129195487, 30883847113, 104479306403, 353450961809, 1195716038943, 4045078385041, 13684402155875
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2013

Keywords

Comments

Column 2 of A221446.

Examples

			Some solutions for n=3:
..0..1....1..0....0..1....1..1....1..0....1..1....1..1....1..0....1..1....0..1
..1..1....0..1....1..1....1..1....1..1....0..1....1..0....1..0....1..1....0..1
..0..1....1..1....1..0....1..0....0..1....0..1....1..0....1..1....0..1....1..1
		

Crossrefs

Cf. A221446.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + a(n-3).
Empirical g.f.: x*(3 + x^2) / (1 - 3*x - x^2 - x^3). - Colin Barker, Aug 05 2018

A221441 Hilltop maps: number of n X 3 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 n X 3 array.

Original entry on oeis.org

5, 33, 221, 1473, 9829, 65569, 437437, 2918273, 19468741, 129882145, 866485149, 5780598081, 38564209189, 257274109985, 1716357449085, 11450366664449, 76389039372165, 509615587618849, 3399807737852509, 22681199192442049
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2013

Keywords

Comments

Column 3 of A221446.

Examples

			Some solutions for n=3:
..1..1..0....0..1..1....1..0..1....0..1..1....1..0..1....1..1..0....0..1..1
..0..0..1....0..1..0....1..1..1....0..1..0....0..1..0....0..1..1....1..1..1
..1..1..0....1..1..1....1..1..0....1..0..1....0..1..1....1..0..1....1..0..1
		

Crossrefs

Cf. A221446.

Formula

Empirical: a(n) = 5*a(n-1) + 11*a(n-2) + a(n-3).
Empirical g.f.: x*(5 + 8*x + x^2) / (1 - 5*x - 11*x^2 - x^3). - Colin Barker, Aug 05 2018

A221442 Hilltop maps: number of n X 4 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 n X 4 array.

Original entry on oeis.org

9, 117, 1465, 18393, 230845, 2897357, 36364977, 456419681, 5728560373, 71899621813, 902417942313, 11326320232169, 142157556964077, 1784230940565533, 22394026158604769, 281069224947245681
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2013

Keywords

Comments

Column 4 of A221446.

Examples

			Some solutions for n=3:
..1..1..0..0....0..1..0..1....1..1..1..1....1..0..0..1....0..1..0..0
..1..1..1..0....1..0..0..1....1..0..1..1....1..0..0..0....0..0..1..0
..1..0..1..1....1..1..1..0....0..1..1..0....1..1..1..0....1..0..1..1
		

Crossrefs

Cf. A221446.

Formula

Empirical: a(n) = 9*a(n-1) + 42*a(n-2) + 34*a(n-3) - 21*a(n-4) - 11*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(9 + 36*x + 34*x^2 - 12*x^3 - 11*x^4 - 8*x^5) / (1 - 9*x - 42*x^2 - 34*x^3 + 21*x^4 + 11*x^5 + 4*x^6). - Colin Barker, Aug 05 2018

A221443 Hilltop maps: number of nX5 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 nX5 array.

Original entry on oeis.org

17, 429, 10593, 260557, 6415089, 157933741, 3888200065, 95724317069, 2356654610641, 58018914711981, 1428378365629601, 35165510520296269, 865746191545503153, 21313965220121585837, 524732442187736997569
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Column 5 of A221446

Examples

			Some solutions for n=3
..1..1..0..0..1....1..1..1..1..1....0..1..1..1..1....0..1..1..0..1
..0..1..1..0..1....0..1..0..1..1....1..0..0..1..1....1..0..1..1..0
..1..1..1..0..1....1..1..1..1..0....1..0..1..0..1....1..0..0..1..1
		

Formula

Empirical: a(n) = 17*a(n-1) +168*a(n-2) +464*a(n-3) +442*a(n-4) +30*a(n-5) -88*a(n-6) -9*a(n-8) +a(n-9)

A221444 Hilltop maps: number of nX6 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 nX6 array.

Original entry on oeis.org

31, 1577, 76055, 3669101, 177320895, 8569227073, 414116287743, 20012580804813, 967127817426727, 46737411242830049, 2258631763028702151, 109150620595639469645, 5274812021536486627631, 254910523741875128561121
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Column 6 of A221446

Examples

			Some solutions for n=3
..0..1..1..0..1..0....0..1..0..0..1..1....1..0..1..1..1..1....1..1..1..1..1..1
..0..1..1..1..1..0....1..1..0..1..1..1....1..0..1..0..0..1....1..1..1..1..1..1
..1..1..1..0..0..1....0..1..0..0..1..1....1..0..1..1..1..0....0..1..1..0..1..1
		

Formula

Empirical: a(n) = 31*a(n-1) +737*a(n-2) +4637*a(n-3) +10078*a(n-4) +3446*a(n-5) -14110*a(n-6) -4246*a(n-7) -1045*a(n-8) +11211*a(n-9) -13907*a(n-10) +5385*a(n-11) -2232*a(n-12) +16*a(n-13) for n>15

A221445 Hilltop maps: number of nX7 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 nX7 array.

Original entry on oeis.org

57, 5785, 543081, 51186449, 4832005625, 456064257841, 43045366565233, 4062814670687601, 383466625153100089, 36193296042509422929, 3416085237442369485553, 322425410952503720400913
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Column 7 of A221446

Examples

			Some solutions for n=3
..0..1..1..1..1..0..1....0..1..1..1..1..0..1....0..1..1..1..1..1..1
..0..1..1..1..0..0..1....0..0..1..1..1..1..0....0..0..1..0..0..0..1
..0..1..0..1..1..1..1....0..1..1..0..0..1..1....0..1..0..0..1..1..1
		

A221447 Hilltop maps: number of 2 X n binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 2 X n array.

Original entry on oeis.org

1, 9, 33, 117, 429, 1577, 5785, 21217, 77825, 285473, 1047145, 3841029, 14089277, 51680881, 189570641, 695364065, 2550664929, 9356094041, 34319088593, 125885849013, 461761883309, 1693788766169, 6212986580521, 22789856102913
Offset: 1

Views

Author

R. H. Hardin, Jan 17 2013

Keywords

Comments

Row 2 of A221446.

Examples

			Some solutions for n=3:
..1..0..1....0..1..0....0..1..1....1..0..1....1..1..0....0..1..0....1..1..0
..0..1..0....1..1..0....0..0..1....1..1..1....1..1..0....0..0..1....0..0..1
		

Crossrefs

Cf. A221446.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + 5*a(n-3) + a(n-4) + a(n-5) - a(n-6) - a(n-7).
Empirical g.f.: x*(1 + 6*x + 5*x^2 + 4*x^3 - x^4 - 2*x^5 - x^6) / ((1 + x^2)*(1 - 3*x - 2*x^2 - 2*x^3 + x^4 + x^5)). - Colin Barker, Aug 05 2018

A221448 Hilltop maps: number of 3Xn binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 3Xn array.

Original entry on oeis.org

1, 31, 221, 1465, 10593, 76055, 543081, 3883061, 27769277, 198564543, 1419847869, 10152784401, 72598518713, 519122981715, 3712041493221, 26543328598837, 189800757263741, 1357189525524527, 9704721072833461, 69394590298217165
Offset: 1

Views

Author

R. H. Hardin Jan 17 2013

Keywords

Comments

Row 3 of A221446

Examples

			Some solutions for n=3
..0..1..1....1..1..0....1..1..1....1..1..1....0..1..0....0..1..1....1..0..1
..1..1..0....0..1..1....1..1..1....0..1..1....0..0..1....0..1..1....1..1..1
..1..0..1....1..1..1....0..1..0....1..1..1....1..1..1....1..0..1....1..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) +8*a(n-2) +46*a(n-3) +39*a(n-4) +69*a(n-5) -10*a(n-6) -38*a(n-7) -68*a(n-8) -40*a(n-9) +50*a(n-10) +18*a(n-11) -13*a(n-12) -7*a(n-13) +4*a(n-14) +2*a(n-15) -a(n-16) +a(n-17)
Showing 1-10 of 14 results. Next