A221493 Number of tangled bicolored graphs on n labeled vertices.
0, 0, 0, 0, 12, 120, 2460, 64680, 2323692, 111920760, 7272700860, 639739653960, 76764606923532, 12645557866982040, 2878366780307114460, 909775941009828296040, 401039212596034472197932, 247339947733328456032703160, 214013123181627427780427544060
Offset: 0
Examples
The only tangled bicolored graph on 4 vertices (up to isomorphism) consists of 2 black vertices, 2 white vertices, and 2 edges, with each black vertex joined to a different white vertex. Given 4 labels, there are 12 distinct ways of labeling the vertices, so a(4) = 1.
Links
- M. Guay-Paquet, A. H. Morales, E. Rowland, Structure and enumeration of (3+1)-free posets (extended abstract), arXiv:1212.5356 [math.CO], 2012.
Programs
-
Mathematica
nmax = 19; B[x_] = Sum[Exp[2^n x] x^n/n!, {n, 0, nmax}] + O[x]^nmax; T[x_] = 2 Exp[-x] - 1 - 1/B[x] + O[x]^nmax; CoefficientList[T[x], x] Range[0, nmax-1]! (* Jean-François Alcover, Aug 12 2018 *)
Formula
E.g.f.: T(x) = 2*e^(-x) - 1 - 1/B(x), where B(x) is the e.g.f. for A047863.
Comments