A221579 A sum over partitions (q=10), see first comment.
1, 9, 99, 990, 9990, 99891, 999900, 9998901, 99998910, 999989010, 9999989010, 99999889110, 999999890109, 9999998890200, 99999998891100, 999999988901199, 9999999988902090, 99999999888912090, 999999999889011990, 9999999998889021990
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*10^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 25 2013
-
Mathematica
b[n_] := Sum[EulerPhi[d]*10^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-10*x^n) ); v=Vec(gf)
Comments