A221649 Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.
1, 1, 1, 2, 2, 1, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 2, 0, 4, 5, 3, 6, 2, 0, 6, 1, 2, 0, 4, 1, 0, 0, 0, 5, 7, 5, 10, 3, 0, 9, 2, 4, 0, 8, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 11, 7, 14, 5, 0, 15, 3, 6, 0, 12, 2, 0, 0, 0, 10, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7
Offset: 1
Examples
First five slices of tetrahedron are --------------------------------------------------- n j / k 1 2 3 4 5 6 A221529 A066186 --------------------------------------------------- 1 1 1, 1 1 ................................................... 2 1 1, 1 2 2 1, 2, 3 4 ................................................... 3 1 2, 2 3 2 1, 2, 3 3 3 1, 0, 3, 4 9 ................................................... 4 1 3, 3 4 2 2, 4, 6 4 3 1, 0, 3, 4 4 4 1, 2, 0, 4, 7 20 ................................................... 5 1 5, 5 5 2 3, 6, 9 5, 3, 2, 0, 6, 8 5, 4, 1, 2, 0, 4, 7 5, 5, 1, 0, 0, 0, 5, 6 35 ................................................... . From _Omar E. Pol_, Jul 26 2021: (Start) The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5): . |---|---------|-----|-------|---------|-----------|-------------| | n | | 1 | 2 | 3 | 4 | 5 | |---|---------|-----|-------|---------|-----------|-------------| | | - | | | | | 5 | | C | - | | | | 3 | 3 6 | | O | - | | | 2 | 2 4 | 2 0 6 | | N | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 | | D | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 | |---|---------|-----|-------|---------|-----------|-------------| . |---|---------|-----|-------|---------|-----------|-------------| | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | D | A127093 | | | | | 1 | | I |---------|-----|-------|---------|-----------|-------------| | V | A127093 | | | | 1 | 1 2 | | I | A127093 | | | | 1 | 1 2 | | S | A127093 | | | | 1 | 1 2 | | O |---------|-----|-------|---------|-----------|-------------| | R | A127093 | | | 1 | 1 2 | 1 0 3 | | S | A127093 | | | 1 | 1 2 | 1 0 3 | | |---------|-----|-------|---------|-----------|-------------| | | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 | | |---------|-----|-------|---------|-----------|-------------| | | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 | |---|---------|-----|-------|---------|-----------|-------------| . |---|---------|-----|-------|---------|-----------|-------------| | | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 | | | | = | = = | = = = | = = = = | = = = = = | | L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 | | I | | * | * * | * * * | * * * * | * * * * * | | N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 | | K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| | | | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 | |---|---------|-----|-------|---------|-----------|-------------| . |---|---------|-----|-------|---------|-----------|-------------| | P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | | A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 | | R | | | | 3 | 3 1 | 3 1 1 | | T | | | | | 2 2 | 2 2 1 | | I | | | | | 4 | 4 1 | | T | | | | | | 3 2 | | I | | | | | | 5 | | O | | | | | | | | N | | | | | | | | S | | | | | | | |---|---------|-----|-------|---------|-----------|-------------| . The upper zone is a condensed version of the "divisors" zone. The above table is the table of A340011 upside down. For more information about the correspondence divisor/part see A338156. (End)
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11480 (rows n = 1..40 of the tetrahedron, flattened)
Crossrefs
Programs
-
Mathematica
A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* Paolo Xausa, Sep 26 2023 *)
Extensions
a(18)-a(19) and a(28)-a(29) corrected by Paolo Xausa, Sep 26 2023
Comments