cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221650 Tetrahedron P(n,j,k) = T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 0, 1, 1, 1, 0, 1, 5, 3, 3, 2, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 1, 7, 5, 5, 3, 0, 3, 2, 2, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 11, 7, 7, 5, 0, 5, 3, 3, 0, 3, 2, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2013

Keywords

Comments

This tetrahedron shows a connection between divisors and partitions.
Conjecture 1: P(n,j,k) is the number of partitions of n that contain at least m parts of size k, where m = j/k, if k divides j otherwise P(n,j,k) = 0.
Conjecture 2: P(n,j,k) is the number of parts that are the m-th part of size k in all partitions of n, where m = j/k, if k divides j otherwise P(n,j,k) = 0.
The sum of all elements of slice n is A006128(n).
The sum of row j of slice n is A221530(n,j).
The sum of column k of slice n is A066633(n,k).
See also the tetrahedron of A221649.

Examples

			First six slices of tetrahedron are
---------------------------------------------------
n  j    k: 1  2  3  4  5  6      A221530   A006128
---------------------------------------------------
1  1       1,                       1         1
...................................................
2  1       1,                       1
2  2       1, 1,                    2         3
...................................................
3  1       2,                       2
3  2       1, 1,                    2
3  3       1, 0, 1,                 2         6
...................................................
4  1       3,                       3
4  2       2, 2,                    4
4  3       1, 0, 1,                 2
4  4       1, 1, 0, 1,              3        12
...................................................
5  1       5,                       5
5  2       3, 3,                    6
5  3       2, 0, 2,                 4
5  4       1, 1, 0, 1,              3
5  5       1, 0, 0, 0, 1,           2        20
...................................................
6  1       7,                       7
6  2       5, 5,                   10
6  3       3, 0, 3,                 6
6  4       2, 2, 0, 2,              6
6  5       1, 0, 0, 0, 1,           2
6  6       1, 1, 1, 0, 0, 1         4        35
...................................................
		

Crossrefs

Programs

  • Mathematica
    A221650row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j],0],{j,n},{k,j}]];Array[A221650row,10] (* Paolo Xausa, Sep 26 2023 *)

Formula

P(n,j,k) = A051731(j,k)*A000041(n-j) = (1/k)*A221649(n,j,k).