cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221671 Maximum number of squares in a non-constant arithmetic progression (AP) of length n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12
Offset: 1

Views

Author

Jonathan Sondow, Jan 24 2013

Keywords

Comments

Let s(n;d,i) denote the number of squares in AP i, i+d, i+2d, ..., i+(n-1)d. Then a(n) is the maximum of s(n;d,i) over all such APs with d > 0.
González-Jiménez and Xarles (2013) compute a(n) up to a(52) = 12 using elliptic curves (see Table 2, where their Q(N) = a(N)). They do not seem to have noticed that a(n) = A193832(n) for n != 5 in the range where they computed a(n). I conjecture that this formula holds for all n != 5.
Bombieri & Zannier prove that a(n) << n^(3/5) (log n)^c for some constant c > 0. It is conjectured that a(n) ~ sqrt(8n/3). - Charles R Greathouse IV, Jan 21 2022

Examples

			The AP 1, 25, 49 = 1^2, 5^2, 7^2 shows that a(3) = 3. By Fermat and Euler, no four squares are in AP, so a(4) = 3 (see A216869). Then the AP 49, 169, 289, 409, 529 = 7^2, 13^2, 17^2, 409, 23^2 shows that a(5) = 4 (see A216870).
		

References

  • Andrew Granville, "Squares in arithmetic progressions and infinitely many primes", The American Mathematical Monthly 124, no. 10 (2017), pp. 951-954.

Crossrefs

Programs

  • Mathematica
    (* note that an extension to more than 52 terms may not be correct *) row[n_] := Join[Table[2*n-1, {2*n-1}], Table[2*n, {n}]]; row[2] = {3, 3, 4, 4, 4}; Flatten[Table[row[n], {n, 1, 6}]][[1 ;; 52]] (* Jean-François Alcover, Jan 25 2013, from formula *)

Formula

a(n) = A193832(n) for n < 53 except for n = 5.
a(n) >= A193832(n) for all n. (Proof. A193832 equals the partial sums of A080995 (characteristic function of generalized pentagonal numbers A001318) and a term in the AP 1+24*k is a square if and only if k = A001318(x) = x*(3*x-1)/2 for some x. See González-Jiménez and Xarles (2013) Lemma 2.)
a(A221672(n)) = n.