A221834 G.f.: Sum_{n>=1} x^n * (1-x^n)^(n-1) / (1-x)^(n-1).
1, 1, 2, 3, 7, 13, 27, 54, 111, 225, 456, 926, 1877, 3796, 7671, 15483, 31212, 62859, 126484, 254296, 510892, 1025765, 2058395, 4128578, 8277344, 16589180, 33237163, 66574351, 133318484, 266924608, 534335692, 1069492787, 2140370294, 4283071475, 8570061106
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 27*x^7 + 54*x^8 + ... where A(x) = x + x^2*(1-x^2)/(1-x) + x^3*(1-x^3)^2/(1-x)^2 + x^4*(1-x^4)^3/(1-x)^3 + ... or, equivalently, A(x) = x + x^2*(1+x) + x^3*(1+x+x^2)^2 + x^4*(1+x+x^2+x^3)^3 + ...
Programs
-
PARI
{a(n)=polcoeff(sum(k=1,n,x^k*((1-x^k)/(1-x) +x*O(x^n))^(k-1)),n)} for(n=1,40,print1(a(n),", "))
Formula
Equals row sums of triangle A221833.
Comments