cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221834 G.f.: Sum_{n>=1} x^n * (1-x^n)^(n-1) / (1-x)^(n-1).

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 27, 54, 111, 225, 456, 926, 1877, 3796, 7671, 15483, 31212, 62859, 126484, 254296, 510892, 1025765, 2058395, 4128578, 8277344, 16589180, 33237163, 66574351, 133318484, 266924608, 534335692, 1069492787, 2140370294, 4283071475, 8570061106
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2013

Keywords

Comments

Conjecture: a(n) is the number of compositions of n if all single instances of the part 1 are frozen ([1]). Example: The compositions enumerated by a(5) = 13 are 5; 4,[1]; 3,2; 2,3; 3,1,1; 1,3,1; 1,1,3; 2,2,[1]; 2,1,1,1; 1,2,1,1; 1,1,2,1; 1,1,1,2; 1,1,1,1,1. - Gregory L. Simay, Oct 27 2022

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 27*x^7 + 54*x^8 + ...
where
A(x) = x + x^2*(1-x^2)/(1-x) + x^3*(1-x^3)^2/(1-x)^2 + x^4*(1-x^4)^3/(1-x)^3 + ...
or, equivalently,
A(x) = x + x^2*(1+x) + x^3*(1+x+x^2)^2 + x^4*(1+x+x^2+x^3)^3 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=1,n,x^k*((1-x^k)/(1-x) +x*O(x^n))^(k-1)),n)}
    for(n=1,40,print1(a(n),", "))

Formula

Equals row sums of triangle A221833.