A221836 Triangle in which m-th term of n-th row is the number of integer Heron triangles with two of the sides having lengths n, m.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins 0; 0, 0; 0, 0, 0; 0, 0, 1, 0; 0, 0, 1, 1, 2; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 1, 1, 2.
Links
- Sourav Sen Gupta, Nirupam Kar, Subhamoy Maitra, Santanu Sarkar, and Pantelimon Stanica, Counting Heron triangles with Constraints, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A3, 2013.
- Eric Weisstein's World of Mathematics, Heronian Triangle.
Programs
-
Sage
def A221836(n, m) : count = 0 for k in range(abs(n-m)+1, n+m) : s = (n + m + k)/2 Asq = s * (s-n) * (s-m) * (s-k) if Asq.is_integral() and Asq.is_square() : count += 1 return count
Comments