cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A221979 Partial sums of primes of the form (n+1)^7 - n^7.

Original entry on oeis.org

127, 14324, 557931, 1831540, 4517357, 9734388, 26079025, 167982242, 2096276793, 10354981402, 24379848623, 47195272710, 78109546591, 169264277168, 285424955019, 468934979410, 749602296677, 1302535107108, 2819580695167, 4457920826414
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Number of primes equal (x+1)^7 - x^7 < 10^(n) in A221977. Partial sums of number of primes of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^5 - x^5 (A221848).

Programs

  • Mathematica
    Accumulate[Select[Differences[Range[80]^7],PrimeQ]] (* Harvey P. Dale, Jul 09 2024 *)

A221985 Partial sums of primes of the form (n+1)^11 - n^11.

Original entry on oeis.org

313968931, 6926576780, 75545517171, 2332950292798, 26362646685307289, 157261278401555730, 11893629184686938707, 40838913299508512438, 270600054840430038249, 203248659302772610786786, 431646786892325713723157, 907860322879288498305774, 2535699587078276763578623
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive eleventh powers (x+1)^11 - x^11 = 11x(x+1)(x^2+x+1)[ x(x+1)(x^2+x+1)(x^2+x+3)+1] +1 (A189055). Values of x = A211184. Number of primes equal (x+1)^11 - x^11 < 10^(n) in A221983. Partial sums of number of primes of the form (x+1)^11 - x^11 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^p - x^p for p = 5 (A221848) and p = 7 (A221979).

Programs

  • Mathematica
    Accumulate[Select[Differences[Range[300]^11],PrimeQ]] (* Harvey P. Dale, Mar 24 2023 *)
Showing 1-2 of 2 results.