cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221855 Number of cyclotomic cosets of 13 mod 10^n.

Original entry on oeis.org

4, 12, 30, 72, 130, 204, 294, 400, 522, 660, 814, 984, 1170, 1372, 1590, 1824, 2074, 2340, 2622, 2920, 3234, 3564, 3910, 4272, 4650, 5044, 5454, 5880, 6322, 6780, 7254, 7744, 8250, 8772, 9310, 9864, 10434, 11020, 11622, 12240, 12874, 13524, 14190, 14872, 15570, 16284, 17014, 17760, 18522, 19300
Offset: 1

Views

Author

V. Raman, Jan 28 2013

Keywords

Examples

			a(2) = 12 because there are 12 cyclotomic cosets of 13 mod 100:
{1, 13, 69, 97, 61, 93, 9, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77}
{3, 39, 7, 91, 83, 79, 27, 51, 63, 19, 47, 11, 43, 59, 67, 71, 23, 99, 87, 31}
{2, 26, 38, 94, 22, 86, 18, 34, 42, 46, 98, 74, 62, 6, 78, 14, 82, 66, 58, 54}
{4, 52, 76, 88, 44, 72, 36, 68, 84, 92, 96, 48, 24, 12, 56, 28, 64, 32, 16, 8}
{5, 65, 45, 85}
{15, 95, 35, 55}
{25}
{75}
{10, 30, 90, 70}
{20, 60, 80, 40}
{50}
{0}
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=DivisorSum[10^n,EulerPhi[#]/MultiplicativeOrder[13,#]&]; Array[a,50] (* Ray Chandler, Jul 03 2023, after Jean-François Alcover *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(13, d)))", "))

Formula

a(n) = A220018(n) for n = 1.
a(n) = A220018(n) + 1 for all n >= 2.
Conjecture: a(n) = 2*n*(4*n-7) for n>2. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>5. G.f.: 2*x*(4*x^4-7*x^3-3*x^2-2) / (x-1)^3. - Colin Barker, Apr 14 2013