cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221876 T(n,k) is the number of order-preserving full contraction mappings (of an n-chain) with exactly k fixed points.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 5, 2, 1, 28, 12, 5, 2, 1, 64, 28, 12, 5, 2, 1, 144, 64, 28, 12, 5, 2, 1, 320, 144, 64, 28, 12, 5, 2, 1, 704, 320, 144, 64, 28, 12, 5, 2, 1, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Row sum is A001792(n-1).
The matrix inverse starts
1;
-2,1;
-1,-2,1;
0,-1,-2,1;
1,0,-1,-2,1;
2,1,0,-1,-2,1;
3,2,1,0,-1,-2,1;
4,3,2,1,0,-1,-2,1;
5,4,3,2,1,0,-1,-2,1;
6,5,4,3,2,1,0,-1,-2,1;
7,6,5,4,3,2,1,0,-1,-2,1; - R. J. Mathar, Apr 12 2013
...
T(n,k) is also the total number of occurrences of parts k in all compositions (ordered partitions) of n, see example. The equivalent sequence for partitions is A066633. Omar E. Pol, Aug 26 2013

Examples

			T(5,3) = 5 because there are exactly 5 order-preserving full contraction mappings (of a 5-chain) with exactly 3 fixed points, namely: (12333), (12334), (22344), (23345), (33345).
Triangle begins:
1,
2, 1,
5, 2, 1,
12, 5, 2, 1,
28, 12, 5, 2, 1,
64, 28, 12, 5, 2, 1,
144, 64, 28, 12, 5, 2, 1,
320, 144, 64, 28, 12, 5, 2, 1,
704, 320, 144, 64, 28, 12, 5, 2, 1,
1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
...
Note that column k is column 1 shifted down by k positions.
Row 4 is [12, 5, 2, 1]: in the compositions of 4
[ 1]  [ 1 1 1 1 ]
[ 2]  [ 1 1 2 ]
[ 3]  [ 1 2 1 ]
[ 4]  [ 1 3 ]
[ 5]  [ 2 1 1 ]
[ 6]  [ 2 2 ]
[ 7]  [ 3 1 ]
[ 8]  [ 4 ]
there are 12 parts=1, 5 parts=2, 2 part=3, and 1 part=4.
- _Joerg Arndt_, Sep 01 2013
		

Crossrefs

Programs

  • Mathematica
    T[n_, n_] = 1; T[n_, k_] := (n - k + 3)*2^(n - k - 2);
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 21 2018 *)

Formula

T(n,n) = 1, T(n,k) = (n-k+3)*2^(n-k-2) for n>=2 and n > k > 0.
T(2*n+1,n+1) = T(n+1,1) = A045623(n) for n>=0.
T(n,k) = A045623(n-k), n>=1, 1<=k<=n. - Omar E. Pol, Sep 01 2013