A221877
Triangle read by rows: T(n,k) = number of order-preserving or order-reversing full contraction mappings (of an n-chain) with height exactly k.
Original entry on oeis.org
1, 2, 2, 3, 8, 2, 4, 18, 12, 2, 5, 32, 36, 16, 2, 6, 50, 80, 60, 20, 2, 7, 72, 150, 160, 90, 24, 2, 8, 98, 252, 350, 280, 126, 28, 2, 9, 128, 392, 672, 700, 448, 168, 32, 2, 10, 162, 576, 1176, 1512, 1260, 672, 216, 36, 2
Offset: 1
T(3,2) = 8 because there are exactly 8 order-preserving full contraction mappings (of a 3-chain) with exactly height 2, namely: (112), (122), (211), (221), (223), (233), (322), (332).
From _Paolo Xausa_, Aug 18 2025: (Start)
Triangle begins:
1;
2, 2;
3, 8, 2;
4, 18, 12, 2;
5, 32, 36, 16, 2;
6, 50, 80, 60, 20, 2;
7, 72, 150, 160, 90, 24, 2;
8, 98, 252, 350, 280, 126, 28, 2;
9, 128, 392, 672, 700, 448, 168, 32, 2;
10, 162, 576, 1176, 1512, 1260, 672, 216, 36, 2;
... (End)
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened).
- A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, arXiv:1303.7428 [math.CO], 2013.
- A. D. Adeshola, A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, JMCC 106 (2017) 37-49
-
A221877[n_, k_] := If[k == 1, n, 2*(n-k+1)*Binomial[n-1, k-1]];
Table[A221877[n, k], {n, 15}, {k, n}] (* Paolo Xausa, Aug 18 2025 *)
A221882
Number of order-preserving or order-reversing full contraction mappings of an n-chain.
Original entry on oeis.org
1, 4, 13, 36, 91, 218, 505, 1144, 2551, 5622, 12277, 26612, 57331, 122866, 262129, 557040, 1179631, 2490350, 5242861, 11010028, 23068651, 48234474, 100663273, 209715176, 436207591, 905969638, 1879048165, 3892314084, 8053063651, 16642998242, 34359738337
Offset: 1
a(3) = 13 because there are exactly 13 order-preserving or order-reversing full contraction mappings of a 3-chain, namely: (111), (112), (211), (122), (221), (123), (321), (222), (223), (233), (322), (332), (333).
- Paolo Xausa, Table of n, a(n) for n = 1..3000
- A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, arXiv:1303.7428 [math.CO], 2013.
- A. D. Adeshola, A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, JMCC 106 (2017) 37-49
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
A221882[n_] := (n + 1)*2^(n - 1) - n; Array[A221882, 50] (* or *)
LinearRecurrence[{6, -13, 12, -4}, {1, 4, 13, 36}, 50] (* Paolo Xausa, Aug 18 2025 *)
-
a(n)=(n+1)<<(n-1)-n; \\ Charles R Greathouse IV, Feb 28 2013
A228526
Triangle read by rows: T(n,k) = sum of all parts of size k in all compositions (ordered partitions) of n.
Original entry on oeis.org
1, 2, 2, 5, 4, 3, 12, 10, 6, 4, 28, 24, 15, 8, 5, 64, 56, 36, 20, 10, 6, 144, 128, 84, 48, 25, 12, 7, 320, 288, 192, 112, 60, 30, 14, 8, 704, 640, 432, 256, 140, 72, 35, 16, 9, 1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10, 3328, 3072, 2112, 1280, 720
Offset: 1
T(4,2) = 10 because there are 5 parts of size 2 in all compositions of 4, T(4,2) = 5*2 = 10 (see below):
---------------------------------------------------------
. Compositions Parts Sum of parts
. of 4 Diagram of size 2 of size 2
---------------------------------------------------------
. _ _ _ _
. 1+1+1+1 |_| | | | 0 0
. 2+1+1 |_ _| | | 1 2
. 1+2+1 |_| | | 1 2
. 3+1 |_ _ _| | 0 0
. 1+1+2 |_| | | 1 2
. 2+2 |_ _| | 2 4
. 1+3 |_| | 0 0
. 4 |_ _ _ _| 0 0
. ----- ------
. Total 5 10
.
Triangle begins:
1;
2, 2;
5, 4, 3;
12, 10, 6, 4;
28, 24, 15, 8, 5;
64, 56, 36, 20, 10, 6;
144, 128, 84, 48, 25, 12, 7;
320, 288, 192, 112, 60, 30, 14, 8;
704, 640, 432, 256, 140, 72, 35, 16, 9;
1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10;
3328, 3072, 2112, 1280, 720, 384, 196, 96, 45, 20, 11;
...
A221878
Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with exactly k fixed points.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 2, 8, 2, 1, 6, 22, 5, 2, 1, 14, 57, 12, 5, 2, 1, 34, 136, 28, 12, 5, 2, 1, 78, 315, 64, 28, 12, 5, 2, 1, 178, 710, 144, 64, 28, 12, 5, 2, 1, 398, 1577, 320, 144, 64, 28, 12, 5, 2, 1, 882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
Offset: 1
T (4,0) = 6 because there are exactly 6 order-preserving or order-reversing full contraction mappings (of a 4-chain) with no fixed point, namely: (2111), (3321), (3322), (4321), (4322), (4443).
Triangle:
1,
0, 1,
1, 2, 1,
2, 8, 2, 1,
6, 22, 5, 2, 1,
14, 57, 12, 5, 2, 1,
34, 136, 28, 12, 5, 2, 1,
78, 315, 64, 28, 12, 5, 2, 1,
178, 710, 144, 64, 28, 12, 5, 2, 1,
398, 1577, 320, 144, 64, 28, 12, 5, 2, 1,
882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
A221879
Triangle T(n,k) read by rows: Number of order-reversing full contraction mappings (of an n-chain) with 1 fixed point and height exactly k.
Original entry on oeis.org
1, 2, 0, 3, 2, 1, 4, 6, 4, 0, 5, 12, 12, 4, 1, 6, 20, 28, 18, 6, 0, 7, 30, 55, 52, 27, 6, 1, 8, 42, 96, 120, 88, 36, 8, 0, 9, 56, 154, 240, 230, 136, 48, 8, 1, 10, 72, 232, 434, 516, 400, 200, 60, 10, 0, 11, 90, 333, 728, 1036, 996, 650, 280, 75, 10, 1
Offset: 1
T (4,6) = 6 because there are exactly 6 order-reversing full contraction mappings (of a 4-chain) with 1 fixed point and of height exactly 2, namely: (3222), (2221), (2211), (4433), (4333), (3332).
Triangle starts:
1,
2, 0,
3, 2, 1,
4, 6, 4, 0,
5, 12, 12, 4, 1,
6, 20, 28, 18, 6, 0,
7, 30, 55, 52, 27, 6, 1,
8, 42, 96, 120, 88, 36, 8, 0,
9, 56, 154, 240, 230, 136, 48, 8, 1,
10, 72, 232, 434, 516, 400, 200, 60, 10, 0,
11, 90, 333, 728, 1036, 996, 650, 280, 75, 10, 1
...
-
A221879 := proc(n,k)
option remember ;
if n<1 then
0 ;
elif n=1 then
if k = 1 then
1;
else
0 ;
end if;
else
if n = 2 and k=2 then
0;
else
(n-k+1)*binomial(n-2,k-1)+procname(n-2,k-2) ;
end if;
end if;
end proc:
seq(seq( A221879(n,k),k=1..n),n=1..20) ; # R. J. Mathar, Aug 15 2025
A221880
Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with exactly 1 fixed point.
Original entry on oeis.org
1, 2, 8, 22, 57, 136, 315, 710, 1577, 3460, 7527, 16258, 34917, 74624, 158819, 336766, 711777, 1500028, 3152991, 6611834, 13835357, 28894072, 60234843, 125363062, 260512857, 540599156, 1120345175, 2318984050, 4794555477, 9902285680, 20430920787, 42114540398
Offset: 1
a(3) = 8 because there are exactly 8 order-preserving or order-reversing full contraction mappings (of a 3-chain) with exactly 1 fixed point, namely: (111), (112), (222), (233), (333), (321), (322), (221).
- A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, arXiv:1303.7428 [math.CO], 2013.
- A. D. Adeshola, A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, JMCC 106 (2017) 37-49
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-1,8,-4).
A221881
Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with (right) waist exactly k.
Original entry on oeis.org
1, 1, 3, 1, 5, 7, 1, 7, 13, 15, 1, 9, 21, 29, 31, 1, 11, 31, 51, 61, 63, 1, 13, 43, 83, 113, 125, 127, 1, 15, 57, 127, 197, 239, 253, 255, 1, 17, 73, 185, 325, 437, 493, 509, 511, 1, 19, 91, 259, 511, 763, 931, 1003, 1021, 1023
Offset: 1
T(5,2) = 9 because there are exactly 9 order-preserving or order-reversing full contraction mappings (of a 5-chain) with (right) waist exactly 2, namely: (11112), (11122), (11222), (12222), (21111), (22111), (22211), (22221), (22222).
A228527
Triangle read by rows: T(n,k) is the sum of all parts of size k of the n-th section of the set of compositions ( ordered partitions) of any integer >= n.
Original entry on oeis.org
1, 1, 2, 3, 2, 3, 7, 6, 3, 4, 16, 14, 9, 4, 5, 36, 32, 21, 12, 5, 6, 80, 72, 48, 28, 15, 6, 7, 176, 160, 108, 64, 35, 18, 7, 8, 384, 352, 240, 144, 80, 42, 21, 8, 9, 832, 768, 528, 320, 180, 96, 49, 24, 9, 10, 1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11
Offset: 1
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4:
.
. 1 2 3 4
. _ _ _ _
. |_| _| | | | | |
. |_ _| _ _| | | |
. |_| | | |
. |_ _ _| _ _ _| |
. |_| | |
. |_ _| |
. |_| |
. |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 6 because there are 3 parts of size 2 in the last section of the set of compositions of 4, so T(4,2) = 3*2 = 6, see below:
--------------------------------------------------------
. The last section Sum of
. Composition of 4 of the set of parts of
. compositions of 4 size k
. -------------------- -------------------
. Diagram Diagram k = 1 2 3 4
. ------------------------------------------------------
. _ _ _ _ _
. 1+1+1+1 |_| | | | 1 | | 1 0 0 0
. 2+1+1 |_ _| | | 1 | | 1 0 0 0
. 1+2+1 |_| | | 1 | | 1 0 0 0
. 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0
. 1+1+2 |_| | | 1+1+2 |_| | | 2 2 0 0
. 2+2 |_ _| | 2+2 |_ _| | 0 4 0 0
. 1+3 |_| | 1+3 |_| | 1 0 3 0
. 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 4
. ---------
. Column sums give row 4: 7,6,3,4
.
Triangle begins:
1;
1, 2;
3, 2, 3;
7, 6, 3, 4;
16, 14, 9, 4, 5;
36, 32, 21, 12, 5, 6;
80, 72, 48, 28, 15, 6, 7;
176, 160, 108, 64, 35, 18, 7, 8;
384, 352, 240, 144, 80, 42, 21, 8, 9;
832, 768, 528, 320, 180, 96, 49, 24, 9, 10;
1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11;
...
A228524
Triangle read by rows: T(n,k) = total number of occurrences of parts k in the n-th section of the set of compositions (ordered partitions) of any integer >= n.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 3, 1, 1, 16, 7, 3, 1, 1, 36, 16, 7, 3, 1, 1, 80, 36, 16, 7, 3, 1, 1, 176, 80, 36, 16, 7, 3, 1, 1, 384, 176, 80, 36, 16, 7, 3, 1, 1, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 3840, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1
Offset: 1
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4, also the first four sections of the set of compositions of any integer >= 4:
.
. 1 2 3 4
. _ _ _ _
. |_| _| | | | | |
. |_ _| _ _| | | |
. |_| | | |
. |_ _ _| _ _ _| |
. |_| | |
. |_ _| |
. |_| |
. |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 3 because there are 3 parts of size 2 in all compositions of 4, see below:
--------------------------------------------------------
. The last section Number of
. Composition of 4 of the set of parts of
. compositions of 4 size k
. -------------------- -------------------
. Diagram Diagram k = 1 2 3 4
. ------------------------------------------------------
. _ _ _ _ _
. 1+1+1+1 |_| | | | 1 | | 1 0 0 0
. 2+1+1 |_ _| | | 1 | | 1 0 0 0
. 1+2+1 |_| | | 1 | | 1 0 0 0
. 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0
. 1+1+2 |_| | | 1+1+2 |_| | | 2 1 0 0
. 2+2 |_ _| | 2+2 |_ _| | 0 2 0 0
. 1+3 |_| | 1+3 |_| | 1 0 1 0
. 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 1
. ---------
. Column sums give row 4: 7,3,1,1
.
Triangle begins:
1;
1, 1;
3, 1, 1;
7, 3, 1, 1;
16, 7, 3, 1, 1;
36, 16, 7, 3, 1, 1;
80, 36, 16, 7, 3, 1, 1;
176, 80, 36, 16, 7, 3, 1, 1;
384, 176, 80, 36, 16, 7, 3, 1, 1;
832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
3840, 1792, 832, 384,176, 80, 36, 16, 7, 3, 1, 1;
8192, 3840,1792, 832,384,176, 80, 36, 16, 7, 3, 1, 1;
...
Showing 1-9 of 9 results.
Comments