cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A221877 Triangle read by rows: T(n,k) = number of order-preserving or order-reversing full contraction mappings (of an n-chain) with height exactly k.

Original entry on oeis.org

1, 2, 2, 3, 8, 2, 4, 18, 12, 2, 5, 32, 36, 16, 2, 6, 50, 80, 60, 20, 2, 7, 72, 150, 160, 90, 24, 2, 8, 98, 252, 350, 280, 126, 28, 2, 9, 128, 392, 672, 700, 448, 168, 32, 2, 10, 162, 576, 1176, 1512, 1260, 672, 216, 36, 2
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Row sums are A221882.

Examples

			T(3,2) = 8 because there are exactly 8 order-preserving full contraction mappings (of a 3-chain) with exactly height 2, namely: (112), (122), (211), (221), (223), (233), (322), (332).
From _Paolo Xausa_, Aug 18 2025: (Start)
Triangle begins:
   1;
   2,   2;
   3,   8,   2;
   4,  18,  12,    2;
   5,  32,  36,   16,    2;
   6,  50,  80,   60,   20,    2;
   7,  72, 150,  160,   90,   24,   2;
   8,  98, 252,  350,  280,  126,  28,   2;
   9, 128, 392,  672,  700,  448, 168,  32,  2;
  10, 162, 576, 1176, 1512, 1260, 672, 216, 36, 2;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    A221877[n_, k_] := If[k == 1, n, 2*(n-k+1)*Binomial[n-1, k-1]];
    Table[A221877[n, k], {n, 15}, {k, n}] (* Paolo Xausa, Aug 18 2025 *)

Formula

T(n,1) = n and T(n,k) = 2(n-k+1)*C(n-1,k-1) if k > 1.

Extensions

Name edited by Paolo Xausa, Aug 18 2025

A221882 Number of order-preserving or order-reversing full contraction mappings of an n-chain.

Original entry on oeis.org

1, 4, 13, 36, 91, 218, 505, 1144, 2551, 5622, 12277, 26612, 57331, 122866, 262129, 557040, 1179631, 2490350, 5242861, 11010028, 23068651, 48234474, 100663273, 209715176, 436207591, 905969638, 1879048165, 3892314084, 8053063651, 16642998242, 34359738337
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

a(n) is the order of the semigroup (monoid) of order-preserving or order-reversing full contraction mappings (of an n-chain).

Examples

			a(3) = 13 because there are exactly 13 order-preserving or order-reversing full contraction mappings of a 3-chain, namely: (111), (112), (211), (122), (221), (123), (321), (222), (223), (233), (322), (332), (333).
		

Crossrefs

Programs

Formula

a(n) = (n+1)*2^(n-1) - n.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
a(n) = Sum_{k=1..n} A221877(n,k) = Sum_{k=0..n-1} A221878(n,k) = Sum_{k=1..n} A221881(n,k). [Edited by Paolo Xausa, Aug 18 2025]
G.f.: x*(1-2*x+2*x^2-2*x^3)/(1-3*x+2*x^2)^2. [Bruno Berselli, Mar 01 2013]

Extensions

More terms from Joerg Arndt, Mar 01 2013

A228526 Triangle read by rows: T(n,k) = sum of all parts of size k in all compositions (ordered partitions) of n.

Original entry on oeis.org

1, 2, 2, 5, 4, 3, 12, 10, 6, 4, 28, 24, 15, 8, 5, 64, 56, 36, 20, 10, 6, 144, 128, 84, 48, 25, 12, 7, 320, 288, 192, 112, 60, 30, 14, 8, 704, 640, 432, 256, 140, 72, 35, 16, 9, 1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10, 3328, 3072, 2112, 1280, 720
Offset: 1

Views

Author

Omar E. Pol, Aug 28 2013

Keywords

Comments

The equivalent sequence for partitions is A138785, see the first comment there.

Examples

			T(4,2) = 10 because there are 5 parts of size 2 in all compositions of 4, T(4,2) = 5*2 = 10 (see below):
---------------------------------------------------------
. Compositions                   Parts      Sum of parts
.     of 4        Diagram      of size 2     of size 2
---------------------------------------------------------
.                 _ _ _ _
.   1+1+1+1      |_| | | |         0             0
.     2+1+1      |_ _| | |         1             2
.     1+2+1      |_|   | |         1             2
.       3+1      |_ _ _| |         0             0
.     1+1+2      |_| |   |         1             2
.       2+2      |_ _|   |         2             4
.       1+3      |_|     |         0             0
.         4      |_ _ _ _|         0             0
.                                -----        ------
.                           Total  5            10
.
Triangle begins:
1;
2,       2;
5,       4,    3;
12,     10,    6,    4;
28,     24,   15,    8,   5;
64,     56,   36,   20,  10,   6;
144,   128,   84,   48,  25,  12,   7;
320,   288,  192,  112,  60,  30,  14,  8;
704,   640,  432,  256, 140,  72,  35, 16,  9;
1536, 1408,  960,  576, 320, 168,  84, 40, 18, 10;
3328, 3072, 2112, 1280, 720, 384, 196, 96, 45, 20, 11;
...
		

Crossrefs

Column k is k*A045623. Row sums give A001787, n >= 1. Right border gives A000027.

Formula

T(n,k) = k*A045623(n-k) = k*A221876(n,k), n >=1, 1<=k<=n.

A221878 Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with exactly k fixed points.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 8, 2, 1, 6, 22, 5, 2, 1, 14, 57, 12, 5, 2, 1, 34, 136, 28, 12, 5, 2, 1, 78, 315, 64, 28, 12, 5, 2, 1, 178, 710, 144, 64, 28, 12, 5, 2, 1, 398, 1577, 320, 144, 64, 28, 12, 5, 2, 1, 882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Its row sum is A221882.

Examples

			T (4,0) = 6 because there are exactly 6 order-preserving or order-reversing full contraction mappings (of a 4-chain) with no fixed point, namely: (2111), (3321), (3322), (4321), (4322), (4443).
Triangle:
1,
0, 1,
1, 2, 1,
2, 8, 2, 1,
6, 22, 5, 2, 1,
14, 57, 12, 5, 2, 1,
34, 136, 28, 12, 5, 2, 1,
78, 315, 64, 28, 12, 5, 2, 1,
178, 710, 144, 64, 28, 12, 5, 2, 1,
398, 1577, 320, 144, 64, 28, 12, 5, 2, 1,
882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
		

Crossrefs

Formula

T(n,0) = T(n-1,1), T(n,1) = A059570(n) + A221876(n,1) - n and T(n,k) = A221876 if k > 1.

A221879 Triangle T(n,k) read by rows: Number of order-reversing full contraction mappings (of an n-chain) with 1 fixed point and height exactly k.

Original entry on oeis.org

1, 2, 0, 3, 2, 1, 4, 6, 4, 0, 5, 12, 12, 4, 1, 6, 20, 28, 18, 6, 0, 7, 30, 55, 52, 27, 6, 1, 8, 42, 96, 120, 88, 36, 8, 0, 9, 56, 154, 240, 230, 136, 48, 8, 1, 10, 72, 232, 434, 516, 400, 200, 60, 10, 0, 11, 90, 333, 728, 1036, 996, 650, 280, 75, 10, 1
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Row sums are A059570.

Examples

			T (4,6) = 6 because there are exactly 6 order-reversing full contraction mappings (of a 4-chain) with 1 fixed point and of height exactly 2, namely: (3222), (2221), (2211), (4433), (4333), (3332).
Triangle starts:
  1,
  2, 0,
  3, 2, 1,
  4, 6, 4, 0,
  5, 12, 12, 4, 1,
  6, 20, 28, 18, 6, 0,
  7, 30, 55, 52, 27, 6, 1,
  8, 42, 96, 120, 88, 36, 8, 0,
  9, 56, 154, 240, 230, 136, 48, 8, 1,
  10, 72, 232, 434, 516, 400, 200, 60, 10, 0,
  11, 90, 333, 728, 1036, 996, 650, 280, 75, 10, 1
  ...
		

Crossrefs

Programs

  • Maple
    A221879 := proc(n,k)
        option remember ;
        if n<1 then
            0 ;
        elif n=1 then
            if k = 1 then
                1;
            else
                0 ;
            end if;
        else
            if n = 2 and k=2 then
                0;
            else
                (n-k+1)*binomial(n-2,k-1)+procname(n-2,k-2) ;
            end if;
        end if;
    end proc:
    seq(seq( A221879(n,k),k=1..n),n=1..20) ; # R. J. Mathar, Aug 15 2025

Formula

T(n, 1) = 1, T(2,2) = 0 and T(n,k) = (n-k+1)*C(n-2,k-1) + T(n-2,k-2) for k > 0.
Sum_{k=1..n} T(n,k) = A059570(n).

A221880 Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with exactly 1 fixed point.

Original entry on oeis.org

1, 2, 8, 22, 57, 136, 315, 710, 1577, 3460, 7527, 16258, 34917, 74624, 158819, 336766, 711777, 1500028, 3152991, 6611834, 13835357, 28894072, 60234843, 125363062, 260512857, 540599156, 1120345175, 2318984050, 4794555477, 9902285680, 20430920787, 42114540398
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Examples

			a(3) = 8 because there are exactly 8 order-preserving or order-reversing full contraction mappings (of a 3-chain) with exactly 1 fixed point, namely: (111), (112), (222), (233), (333), (321), (322), (221).
		

Crossrefs

Formula

a(n) = A221878(n,1).
a(n) = A059570(n) + A221876(n,1) - n.
G.f.: x*(1-3*x+5*x^2-3*x^3-3*x^4+x^5)/((1+x)*(1-3*x+2*x^2)^2). [Bruno Berselli, Mar 01 2013]
a(n) = -n+(2^(n-1)*(21*n+34)-8*(-1)^n)/36 for n>1, a(1)=1. [Bruno Berselli, Mar 01 2013]

Extensions

More terms from Bruno Berselli, Mar 01 2013

A221881 Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with (right) waist exactly k.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 13, 15, 1, 9, 21, 29, 31, 1, 11, 31, 51, 61, 63, 1, 13, 43, 83, 113, 125, 127, 1, 15, 57, 127, 197, 239, 253, 255, 1, 17, 73, 185, 325, 437, 493, 509, 511, 1, 19, 91, 259, 511, 763, 931, 1003, 1021, 1023
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Row sums are A221882.

Examples

			T(5,2) = 9 because there are exactly 9 order-preserving or order-reversing full contraction mappings (of a 5-chain) with (right) waist exactly 2, namely: (11112), (11122), (11222), (12222), (21111), (22111), (22211), (22221), (22222).
		

Crossrefs

Formula

T(n,k) = 2*Sum_{p=1..k} C(n-1,p-1) - 1 for k >=1.

A228527 Triangle read by rows: T(n,k) is the sum of all parts of size k of the n-th section of the set of compositions ( ordered partitions) of any integer >= n.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 7, 6, 3, 4, 16, 14, 9, 4, 5, 36, 32, 21, 12, 5, 6, 80, 72, 48, 28, 15, 6, 7, 176, 160, 108, 64, 35, 18, 7, 8, 384, 352, 240, 144, 80, 42, 21, 8, 9, 832, 768, 528, 320, 180, 96, 49, 24, 9, 10, 1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2013

Keywords

Comments

In other words, T(n,k) is the sum of all parts of size k of the last section of the set of compositions (ordered partitions) of n.
For the definition of "section of the set of compositions" see A228524.
The equivalent sequence for partitions is A207383.

Examples

			Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4:
.
.            1      2        3          4
.            _      _        _          _
.           |_|   _| |      | |        | |
.                |_ _|   _ _| |        | |
.                       |_|   |        | |
.                       |_ _ _|   _ _ _| |
.                                |_| |   |
.                                |_ _|   |
.                                |_|     |
.                                |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 6 because there are 3 parts of size 2 in the last section of the set of compositions of 4, so T(4,2) = 3*2 = 6, see below:
--------------------------------------------------------
.                         The last section      Sum of
.   Composition of 4        of the set of      parts of
.                         compositions of 4     size k
. --------------------   -------------------
.            Diagram             Diagram    k = 1 2 3 4
. ------------------------------------------------------
.            _ _ _ _                    _
.  1+1+1+1  |_| | | |         1        | |      1 0 0 0
.    2+1+1  |_ _| | |         1        | |      1 0 0 0
.    1+2+1  |_|   | |         1        | |      1 0 0 0
.      3+1  |_ _ _| |         1   _ _ _| |      1 0 0 0
.    1+1+2  |_| |   |     1+1+2  |_| |   |      2 2 0 0
.      2+2  |_ _|   |       2+2  |_ _|   |      0 4 0 0
.      1+3  |_|     |       1+3  |_|     |      1 0 3 0
.        4  |_ _ _ _|         4  |_ _ _ _|      0 0 0 4
.                                              ---------
.                      Column sums give row 4:  7,6,3,4
.
Triangle begins:
1;
1,       2;
3,       2,    3;
7,       6,    3,   4;
16,     14,    9,   4,   5;
36,     32,   21,  12,   5,   6;
80,     72,   48,  28,  15,   6,   7;
176,   160,  108,  64,  35,  18,   7,  8;
384,   352,  240, 144,  80,  42,  21,  8,  9;
832,   768,  528, 320, 180,  96,  49, 24,  9, 10;
1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11;
...
		

Crossrefs

Formula

T(n,k) = k*A045891(n-k) = k*A228524(n,k), n>=1, 1<=k<=n.

A228524 Triangle read by rows: T(n,k) = total number of occurrences of parts k in the n-th section of the set of compositions (ordered partitions) of any integer >= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 7, 3, 1, 1, 16, 7, 3, 1, 1, 36, 16, 7, 3, 1, 1, 80, 36, 16, 7, 3, 1, 1, 176, 80, 36, 16, 7, 3, 1, 1, 384, 176, 80, 36, 16, 7, 3, 1, 1, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 3840, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2013

Keywords

Comments

Here, define "n-th section of the set of compositions of any integer >= n" to be the set formed by all parts that occur as a result of taking all compositions (ordered partitions) of n and then remove all parts of the compositions of n-1, if n >= 1. Hence the n-th section of the set of compositions of any integer >= n is also the last section of the set of compositions of n. Note that by definition the ordering of compositions is not relevant. For the visualization of the sections here we use a dissection of the diagram of compositions of n in colexicographic order, see example.
The equivalent sequence for partitions is A182703.
Row n lists the first n terms of A045891 in decreasing order.

Examples

			Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4, also the first four sections of the set of compositions of any integer >= 4:
.
.            1      2        3          4
.            _      _        _          _
.           |_|   _| |      | |        | |
.                |_ _|   _ _| |        | |
.                       |_|   |        | |
.                       |_ _ _|   _ _ _| |
.                                |_| |   |
.                                |_ _|   |
.                                |_|     |
.                                |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 3 because there are 3 parts of size 2 in all compositions of 4, see below:
--------------------------------------------------------
.                         The last section    Number of
.   Composition of 4        of the set of      parts of
.                         compositions of 4     size k
. --------------------   -------------------
.            Diagram             Diagram    k = 1 2 3 4
. ------------------------------------------------------
.            _ _ _ _                    _
.  1+1+1+1  |_| | | |         1        | |      1 0 0 0
.    2+1+1  |_ _| | |         1        | |      1 0 0 0
.    1+2+1  |_|   | |         1        | |      1 0 0 0
.      3+1  |_ _ _| |         1   _ _ _| |      1 0 0 0
.    1+1+2  |_| |   |     1+1+2  |_| |   |      2 1 0 0
.      2+2  |_ _|   |       2+2  |_ _|   |      0 2 0 0
.      1+3  |_|     |       1+3  |_|     |      1 0 1 0
.        4  |_ _ _ _|         4  |_ _ _ _|      0 0 0 1
.                                              ---------
.                      Column sums give row 4:  7,3,1,1
.
Triangle begins:
1;
1,       1;
3,       1,   1;
7,       3,   1,   1;
16,      7,   3,   1,  1;
36,     16,   7,   3,  1,  1;
80,     36,  16,   7,  3,  1,   1;
176,    80,  36,  16,  7,  3,   1,  1;
384,   176,  80,  36, 16,  7,   3,  1,  1;
832,   384, 176,  80, 36, 16,   7,  3,  1,  1;
1792,  832, 384, 176, 80, 36,  16,  7,  3,  1, 1;
3840, 1792, 832, 384,176, 80,  36, 16,  7,  3, 1, 1;
8192, 3840,1792, 832,384,176,  80, 36, 16,  7, 3, 1, 1;
...
		

Crossrefs

Row sums give A045623. Every column gives A045891.

Formula

T(n,k) = A045891(n-k), n >= 1, 1<=k<=n.
Showing 1-9 of 9 results.