A228526
Triangle read by rows: T(n,k) = sum of all parts of size k in all compositions (ordered partitions) of n.
Original entry on oeis.org
1, 2, 2, 5, 4, 3, 12, 10, 6, 4, 28, 24, 15, 8, 5, 64, 56, 36, 20, 10, 6, 144, 128, 84, 48, 25, 12, 7, 320, 288, 192, 112, 60, 30, 14, 8, 704, 640, 432, 256, 140, 72, 35, 16, 9, 1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10, 3328, 3072, 2112, 1280, 720
Offset: 1
T(4,2) = 10 because there are 5 parts of size 2 in all compositions of 4, T(4,2) = 5*2 = 10 (see below):
---------------------------------------------------------
. Compositions Parts Sum of parts
. of 4 Diagram of size 2 of size 2
---------------------------------------------------------
. _ _ _ _
. 1+1+1+1 |_| | | | 0 0
. 2+1+1 |_ _| | | 1 2
. 1+2+1 |_| | | 1 2
. 3+1 |_ _ _| | 0 0
. 1+1+2 |_| | | 1 2
. 2+2 |_ _| | 2 4
. 1+3 |_| | 0 0
. 4 |_ _ _ _| 0 0
. ----- ------
. Total 5 10
.
Triangle begins:
1;
2, 2;
5, 4, 3;
12, 10, 6, 4;
28, 24, 15, 8, 5;
64, 56, 36, 20, 10, 6;
144, 128, 84, 48, 25, 12, 7;
320, 288, 192, 112, 60, 30, 14, 8;
704, 640, 432, 256, 140, 72, 35, 16, 9;
1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10;
3328, 3072, 2112, 1280, 720, 384, 196, 96, 45, 20, 11;
...
A228524
Triangle read by rows: T(n,k) = total number of occurrences of parts k in the n-th section of the set of compositions (ordered partitions) of any integer >= n.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 3, 1, 1, 16, 7, 3, 1, 1, 36, 16, 7, 3, 1, 1, 80, 36, 16, 7, 3, 1, 1, 176, 80, 36, 16, 7, 3, 1, 1, 384, 176, 80, 36, 16, 7, 3, 1, 1, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 3840, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1
Offset: 1
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4, also the first four sections of the set of compositions of any integer >= 4:
.
. 1 2 3 4
. _ _ _ _
. |_| _| | | | | |
. |_ _| _ _| | | |
. |_| | | |
. |_ _ _| _ _ _| |
. |_| | |
. |_ _| |
. |_| |
. |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 3 because there are 3 parts of size 2 in all compositions of 4, see below:
--------------------------------------------------------
. The last section Number of
. Composition of 4 of the set of parts of
. compositions of 4 size k
. -------------------- -------------------
. Diagram Diagram k = 1 2 3 4
. ------------------------------------------------------
. _ _ _ _ _
. 1+1+1+1 |_| | | | 1 | | 1 0 0 0
. 2+1+1 |_ _| | | 1 | | 1 0 0 0
. 1+2+1 |_| | | 1 | | 1 0 0 0
. 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0
. 1+1+2 |_| | | 1+1+2 |_| | | 2 1 0 0
. 2+2 |_ _| | 2+2 |_ _| | 0 2 0 0
. 1+3 |_| | 1+3 |_| | 1 0 1 0
. 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 1
. ---------
. Column sums give row 4: 7,3,1,1
.
Triangle begins:
1;
1, 1;
3, 1, 1;
7, 3, 1, 1;
16, 7, 3, 1, 1;
36, 16, 7, 3, 1, 1;
80, 36, 16, 7, 3, 1, 1;
176, 80, 36, 16, 7, 3, 1, 1;
384, 176, 80, 36, 16, 7, 3, 1, 1;
832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
3840, 1792, 832, 384,176, 80, 36, 16, 7, 3, 1, 1;
8192, 3840,1792, 832,384,176, 80, 36, 16, 7, 3, 1, 1;
...
Showing 1-2 of 2 results.
Comments