A221913 Array of coefficients of numerator polynomials (divided by x) of the n-th approximation of the continued fraction x/(1+x/(2+x/(3+...
1, 2, 6, 1, 24, 6, 120, 36, 1, 720, 240, 12, 5040, 1800, 120, 1, 40320, 15120, 1200, 20, 362880, 141120, 12600, 300, 1, 3628800, 1451520, 141120, 4200, 30, 39916800, 16329600, 1693440, 58800, 630, 1, 479001600, 199584000, 21772800, 846720, 11760, 42
Offset: 1
Examples
The irregular triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 1: 1 2: 2 3: 6 1 4: 24 6 5: 120 36 1 6: 720 240 12 7: 5040 1800 120 1 8: 40320 15120 1200 20 9: 362880 141120 12600 300 1 10: 3628800 1451520 141120 4200 30 11: 39916800 16329600 1693440 58800 63 1 12: 479001600 19958400 21772800 846720 11760 42 13: 6227020800 2634508800 299376000 12700800 211680 1176 1 ... Recurrence (short version): a(6,1) = 6*36 + 24 = 240. Recurrence (long version): a(6,1) = 2*4*36 + 24 - 4*3*6 = 240. a(6,1) = binomial(4,1)*5!/2! = 4*3*4*5 = 240.
Programs
-
Mathematica
row[n_] := x/ContinuedFractionK[x, i, {i, 0, n}] // Simplify // Together // Numerator // CoefficientList[#, x]& // Rest; row /@ Range[12] // Flatten (* Jean-François Alcover, Oct 28 2019 *)
Formula
Recurrence (short version): a(n,m) = n*a(n-1,m) + a(n-2,m-1), n>=2, a(1,1) =1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m+1. From the recurrence for the Phat(n,x) polynomials given in a comment above.
Recurrence (long version): a(n,m) = 2*(n-1-m)*a(n-1,m) + a(n-2,m-1) - (n-1-m)*(n-2-m)*a(n-2,m), n >= 1, a(1,0) = 1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m + 1. From the recurrence for the unsigned generalized Laguerre polynomial with parameter alpha = 1. This recurrence can be simplified to the preceding short version, because the following explicit form follows from the one for the generalized Laguerre coefficients (which, in turn, derives from the Rodrigues formula and the Leibniz rule). This proves the relation a(n,m) = |Lhat(1,n-1-m,m)|, with the coefficients |Lhat(1,n,m)| = |A066667(n,m)| of the unsigned n!*L(1,n,x) Laguerre polynomials (parameter alpha = 1).
a(n,m) = binomial(n-1-m,m)*(n-m)!/(m+1)!, n >= 1, 0 <= m <= floor((n-1)/2).
For the e.g.f.s of the column sequences see A105278 (here with different offset, which could be obtained by integration).
E.g.f. for row polynomials gPhat(z,x) := Sum_{z>=0} Phat(n,x)*z^n = Pi*(BesselJ(1, 2*i*sqrt(x)*sqrt(1-z))*BesselY(1, 2*i*sqrt(x)) - BesselY(1, (2*i)*sqrt(x)*sqrt(1-z))*BesselJ(1, 2*i*sqrt(x)))/sqrt(1-z) with Bessel functions and the imaginary unit i = sqrt(-1). Phat(0,x) = 0.
From Wolfdieter Lang, Mar 06 2013 (Start)
For the row polynomials one finds Phat(n,x) = Pi*(z/2)^n*(BesselY(1,z)* BesselJ(n+1,z) - BesselJ(1,z)*BesselY(n+1,z)) where z := -i*2*sqrt(x) and the i is the imaginary unit. An alternative form is Phat(n,x) = 2*(w/2)^n*(BesselI(1,w)*BesselK(n+1,w) + BesselK(1,w)*BesselI(n+1,w)*(-1)^(n+1)), n >= 1, where w := -2*sqrt(x). See a comment above for the derivation. (End)
Limit_{n -> oo} Phat(n,x)/n! = BesselI(1,2*sqrt(x))/sqrt(x). See a comment above. - Wolfdieter Lang, Mar 08 2013
Comments