A084950 Array of coefficients of denominator polynomials of the n-th approximation of the continued fraction x/(1+x/(2+x/(3+..., related to Laguerre polynomial coefficients.
1, 1, 2, 1, 6, 4, 24, 18, 1, 120, 96, 9, 720, 600, 72, 1, 5040, 4320, 600, 16, 40320, 35280, 5400, 200, 1, 362880, 322560, 52920, 2400, 25, 3628800, 3265920, 564480, 29400, 450, 1, 39916800, 36288000, 6531840, 376320, 7350, 36, 479001600, 439084800, 81648000, 5080320, 117600, 882, 1
Offset: 0
Examples
The irregular triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 ... O: 1 1: 1 2: 2 1 3: 6 4 4: 24 18 1 5: 120 96 9 6: 720 600 72 1 7: 5040 4320 600 16 8: 40320 35280 5400 200 1 9: 362880 322560 52920 2400 25 10: 3628800 3265920 564480 29400 450 1 11: 39916800 36288000 6531840 376320 7350 36 12: 479001600 439084800 81648000 5080320 117600 882 1 ...Reformatted and extended by _Wolfdieter Lang_, Mar 02 2013 E.g., to get row 7, multiply each term of row 6 by 7, then add the term NW of term in row 6: 5040 = (7)(720); 4320 = (7)(600) + 20; 600 = (7)(72) + 96; 16 = (7)(1) + 9. Thus row 7 = 5040 4320 600 16 with a sum of 9976 = a(7) of A001040. From _Wolfdieter Lang_, Mar 02 2013: (Start) Recurrence (short version): a(7,2) = 7*72 + 96 = 600. Recurrence (long version): a(7,2) = (2*5-1)*72 + 96 - (5-1)^2*9 = 600. a(7,2) = binomial(5,2)*5!/2! = 10*3*4*5 = 600. (End)
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed.; Addison-Wesley, 1994.
- F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974 (1991 5th printing).
Links
- G. C. Greubel, Rows, n=0..149 of triangle, flattened
- Avram Sidi and Philip E. Hogan, Asymptotics of modified Bessel functions of high order. Int. J. of Pure and Appl. Maths. 71 No. 3 (2011) 481-498.
Crossrefs
Programs
-
Maple
L := (n, k) -> abs(coeff(n!*simplify(LaguerreL(n,x)), x, k)): seq(seq(L(n-k, k), k=0..n/2), n=0..12); # Peter Luschny, Jan 22 2020
-
Mathematica
Table[CoefficientList[Denominator[Together[Fold[w/(#2+#1) &, Infinity, Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* Wouter Meeussen, Aug 08 2010 *) (* or equivalently: *) Table[( (n-m)!*Binomial[n-m, m] )/m! ,{n,0,15}, {m,0,Floor[n/2]}] (* Wouter Meeussen, Aug 08 2010 *) row[n_] := If[n == 0, 1, x/ContinuedFractionK[x, i, {i, 0, n}] // Simplify // Together // Denominator // CoefficientList[#, x] &]; row /@ Range[0, 12] // Flatten (* Jean-François Alcover, Oct 28 2019 *)
Formula
a(n, m) = ((n-m)!/m!)*binomial(n-m,m). - Wouter Meeussen, Aug 08 2010
From Wolfdieter Lang, Mar 02 2013: (Start)
Recurrence (short version): a(n,m) = n*a(n-1,m) + a(n-2,m-1), n>=1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m. From the recurrence for the Q(n,x) polynomials given in a comment above.
Recurrence (long version): a(n,m) = (2*(n-m)-1)*a(n-1,m) + a(n-2,m-1) - (n-m-1)^2*a(n-2,m), n >= 1, a(0,0) =1, a(n,-1) = 0, a(n,m) =0 if n < 2*m. From the standard three term recurrence for the unsigned orthogonal Laguerre polynomials. This recurrence can be simplified to the preceding one, because of the explicit factorial formula given above which follows from the one for the Laguerre coefficients (which, in turn, derives from the Rodrigues formula and the Leibniz rule). This proves the relation a(n,m) = |Lhat(n-m,m)|, with the coefficients |Lhat(n,m)| = |A021009(n,m)| of the unsigned n!*L(n,x) Laguerre polynomials.
For the e.g.f.s of the column sequences see A021009 (here with different offset, which could be obtained by integration).
E.g.f. for row polynomials gQ(z,x) := Sum_{z>=0} Q(n,x)*z^n = (i*Pi*sqrt(x)/sqrt(1-z))*(BesselJ(1, 2*i*sqrt(x)*sqrt(1-z))*BesselY(0, 2*i*sqrt(x)) - BesselY(1, 2*i*sqrt(x)*sqrt(1-z))*BesselJ(0,2*i*sqrt(x))), with the imaginary unit i = sqrt(-1) and Bessel functions. (End)
The row polynomials are Q(n,x) = Pi*(z/2)^(n+1)*(BesselY(0,z)*BesselJ(n+1,z) - BesselJ(0,z)*BesselY(n+1,z)) with z := -i*2*sqrt(x), and the imaginary unit i. An alternative form is Q(n,x) = 2*(w/2)^(n+1)*(BesselI(0,w)*BesselK(n+1,w) - BesselK(0,w)*BesselI(n+1,w)*(-1)^(n+1)) with w := -2*sqrt(x). See A221913 for the derivation based on Abramowitz-Stegun's Handbook. - Wolfdieter Lang, Mar 06 2013
Lim_{n -> infinity} Q(n,x)/n! = BesselI(0,2*sqrt(x)). See a comment on asymptotics above. - Wolfdieter Lang, Mar 07 2013
Extensions
Rows 12 to 17 added based on formula by Wouter Meeussen, Aug 08 2010
Name changed by Wolfdieter Lang, Mar 02 2013
Comments