cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221947 Smallest number k (different from a power of 2) such that A006577(n*k) = A006577(n) + A006577(k), or 0 if no such number exists.

Original entry on oeis.org

3, 3, 423, 3, 81, 423, 75, 3, 0, 81, 11003, 423, 155, 75, 35, 3, 239, 0, 151, 81, 23, 11003, 21, 423, 21, 155, 341, 75, 201, 35, 75, 3, 21, 239, 15, 0, 113, 151, 21, 81, 635, 23, 1131, 11003, 2017, 21, 75, 423, 1267, 21, 75, 155, 253, 341, 151, 75, 7931, 201, 75, 35, 69, 75, 213, 3, 1073, 21, 423, 239, 61, 15
Offset: 1

Views

Author

Michel Lagneau, Feb 25 2013

Keywords

Comments

A006577 is the number of halving and tripling steps to reach 1 in the '3x+1' problem. If n is a power of 2, a(n) = 3.
If k is a power of 2, we obtain trivial results, for example A006577(n*2^m) = A006577(2^m) + A006577(n) = m + A006577(n) => the smallest k is 1.
It appears that a(n) = 0 for n of the form 9*2^a = 9, 18, 36, 72, ...

Examples

			a(3) = 423 because A006577(3*423) = A006577(1269) = 39, and A006577(3) + A006577(423) = 7 + 32 = 39.
		

Crossrefs

Programs

  • Maple
    lst:={ }:C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2:a:=a+1:  else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
    for m from 0 to 40 do:lst:=lst union {2^m}:od:for n from 1 to 73 do: ii:=0:for k from 2 to 50000 while(ii=0) do:z:=n*k : if {k} intersect lst = {} and C(z)=C(n)+C(k) then ii:=1: printf ( "%d %d \n",n,k):else fi:od: if ii=0 and {n} intersect lst = {} and {k} intersect lst = {} then printf ( "%d %d \n",n,0):else fi:od: