A222046 Difference between sums of smallest parts of all partitions of n into odd number of parts and into even number of parts.
0, 1, 1, 3, 1, 4, 2, 5, 0, 7, 1, 7, -1, 8, -1, 12, -5, 11, -3, 13, -8, 18, -8, 18, -14, 22, -14, 28, -21, 29, -20, 34, -33, 43, -33, 49, -44, 54, -48, 67, -64, 73, -66, 85, -87, 105, -94, 114, -120, 132, -128, 156, -159, 174, -172, 203, -213, 234, -232, 263
Offset: 0
Keywords
Examples
a(6) = 2 = (1+2+1+1+6) - (1+1+1+3+2+1) because the partitions of 6 into an odd number of parts are [2,1,1,1,1], [2,2,2], [3,2,1], [4,1,1], [6] and the partitions of 6 into an even number of parts are [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], [3,3], [4,2], [5,1].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+`if`(i<1, [0, 0], b(n, i-1)+ `if`(n [l[2], l[1]])(b(n-i, i)))) end: a:= n-> (l->l[1]-l[2])(b(n, n)): seq(a(n), n=0..100);
-
Mathematica
b[n_, i_] := b[n, i] = {If[n == i, n, 0], 0} + If[i<1, {0, 0}, b[n, i-1] + If[nJean-François Alcover, Jan 23 2017, translated from Maple *)
Formula
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 06 2019