cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222056 Decimal expansion of (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2.

Original entry on oeis.org

2, 7, 4, 9, 3, 3, 4, 6, 3, 3, 8, 6, 5, 2, 5, 5, 8, 8, 9, 1, 7, 5, 3, 8, 7, 3, 8, 7, 2, 2, 6, 7, 9, 3, 5, 6, 9, 0, 9, 8, 1, 6, 4, 6, 1, 9, 7, 5, 8, 6, 2, 3, 5, 1, 7, 8, 9, 8, 6, 0, 3, 4, 4, 7, 3, 6, 2, 4, 1, 6, 3, 1, 7, 2, 0, 3, 1, 7, 5, 7, 6, 9, 4, 1, 5, 6, 1, 2, 7, 3, 8, 3, 2, 1, 8, 7, 1, 2, 2, 4, 9, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2013

Keywords

Comments

This is the probability that the gcd of any two integers is prime. - David Cushing, Mar 27 2013
The asymptotic density of integers whose largest square divisor is a square of a prime (A082293). - Amiram Eldar, Jul 07 2020

Examples

			0.27493346338652558891753873872267935690981646197586235178986...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.2, p. 95.

Crossrefs

Programs

  • Mathematica
    Drop[Flatten[RealDigits[N[PrimeZetaP[2] 6/Pi^2, 100]]], -1] (* Geoffrey Critzer, Jan 17 2015 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1,lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    primezeta(2)*6/Pi^2 \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    sumeulerrat(1/p, 2)/zeta(2) \\ Amiram Eldar, Mar 18 2021