cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354685 a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * H(k), where H(k) is the k-th harmonic number.

Original entry on oeis.org

0, 1, 5, 50, 854, 22354, 833244, 41974176, 2748169584, 226916044848, 23069499189120, 2831994888419520, 413051278946186880, 70608112721914654080, 13982696139441640584960, 3175762393024883382067200, 820007850688478572529203200, 238863690100874514528150681600
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^(n - k) StirlingS1[n, k] HarmonicNumber[k], {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Sum[HarmonicNumber[k] (-Log[1 - x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * (-log(1-x))^n / n!.
a(n) ~ n!^2 * (log(log(n)) + gamma + 1/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 03 2022

A354686 a(n) = n! * Sum_{k=1..n} Stirling1(n,k) * H(k), where H(k) is the k-th harmonic number.

Original entry on oeis.org

0, 1, 1, -4, 38, -646, 17124, -651120, 33563760, -2251415376, 190506294720, -19843054116480, 2494435702953600, -372324067662349440, 65089674982557308160, -13172994619821785548800, 3055455516855073351219200, -805168341051328705189939200
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[StirlingS1[n, k] HarmonicNumber[k], {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Sum[HarmonicNumber[k] Log[1 + x]^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * log(1+x)^n / n!.
Showing 1-2 of 2 results.