A222060 Triangle read by rows: coefficients of harmonic-geometric polynomials.
0, 0, 1, 0, 1, 3, 0, 1, 9, 11, 0, 1, 21, 66, 50, 0, 1, 45, 275, 500, 274, 0, 1, 93, 990, 3250, 4110, 1764, 0, 1, 189, 3311, 17500, 38360, 37044, 13068, 0, 1, 381, 10626, 85050, 287700, 469224, 365904, 109584, 0, 1, 765, 33275, 388500, 1904574, 4667544, 6037416, 3945024, 1026576, 0, 1, 1533, 102630, 1705250, 11651850, 40266828, 76839840, 82188000, 46195920, 10628640
Offset: 0
Examples
Triangle begins: [0] [0, 1] [0, 1, 3] [0, 1, 9, 11] [0, 1, 21, 66, 50] [0, 1, 45, 275, 500, 274] [0, 1, 93, 990, 3250, 4110, 1764] [0, 1, 189, 3311, 17500, 38360, 37044, 13068] [0, 1, 381, 10626, 85050, 287700, 469224, 365904, 109584] ...
Links
- Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, 12 (2012), #A38.
Formula
The n-th polynomial is Sum_{k=0..n} Stirling2(n,k)*|Stirling1(k+1,2)|*x^k.