cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222057 Triangle read by rows: coefficients of harmonic-geometric polynomials.

Original entry on oeis.org

1, 1, 3, 1, 9, 11, 1, 21, 66, 50, 1, 45, 275, 500, 274, 1, 93, 990, 3250, 4110, 1764, 1, 189, 3311, 17500, 38360, 37044, 13068, 1, 381, 10626, 85050, 287700, 469224, 365904, 109584, 1, 765, 33275, 388500, 1904574, 4667544, 6037416, 3945024, 1026576, 1, 1533, 102630, 1705250, 11651850, 40266828, 76839840, 82188000, 46195920, 10628640
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2013

Keywords

Examples

			Triangle begins:
  1;
  1,   3;
  1,   9,    11;
  1,  21,    66,    50;
  1,  45,   275,   500,    274;
  1,  93,   990,  3250,   4110,   1764;
  1, 189,  3311, 17500,  38360,  37044,  13068;
  1, 381, 10626, 85050, 287700, 469224, 365904, 109584;
  ...
		

Crossrefs

Row sums give A222058. See A222060 for another version (including row & column 0).

Programs

  • PARI
    A222057(n,k)=stirling(n,k,2)*abs(stirling(k+1,2)) \\ with 1 <= k <= n: vector(8,n,vector(n,k,A222057(n,k))). - M. F. Hasler, Jul 12 2018

Formula

The n-th polynomial is Sum_{k=0..n} Stirling2(n,k)*|Stirling1(k+1,2)|*x^k.
(The k=0 term is always 0. Sequence lists coefficients of x, x^2, x^3, ... - M. F. Hasler, Jul 12 2018)

A222058 Harmonic-geometric numbers.

Original entry on oeis.org

0, 1, 4, 21, 138, 1095, 10208, 109473, 1328470, 18003675, 269580492, 4420677525, 78801184322, 1517300654415, 31386251780536, 694190761402377, 16348768018619694, 408472183061464515, 10791720442056792740, 300605598797790229629, 8805117712245004098586, 270562051319419652165175, 8702576800277309526639504, 292425620801795849417200881
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2013

Keywords

Crossrefs

Row sums of A222057 or A222060.
Cf. A000254.

Programs

  • Mathematica
    Table[Sum[StirlingS2[n, k]*Abs[StirlingS1[k + 1, 2]], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 09 2013 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*|Stirling1(k+1,2)|.
Maximal term in the sum is asymptotically in position k = n/(2*log(2)) and limit n-> infinity (a(n)/n!)^(1/n) = 1/log(2). - Vaclav Kotesovec, Feb 09 2013
E.g.f.: -log(2 - exp(x))/(2 - exp(x)). - Ilya Gutkovskiy, May 31 2018
a(n) ~ n! * log(n) / (2 * (log(2))^(n+1)) * (1 + (gamma - log(2) - log(log(2))) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 13 2018
Showing 1-2 of 2 results.