cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A222061 Triangle read by rows: coefficients of second-order hypergeometric-harmonic polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 15, 26, 0, 1, 35, 156, 154, 0, 1, 75, 650, 1540, 1044, 0, 1, 155, 2340, 10010, 15660, 8028, 0, 1, 315, 7826, 53900, 146160, 168588, 69264, 0, 1, 635, 25116, 261954, 1096200, 2135448, 1939392, 663696, 0, 1, 1275, 78650, 1196580, 7256844
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2013

Keywords

Examples

			Triangle begins:
  0
  0 1
  0 1 5
  0 1 15 26
  0 1 35 156 154
  0 1 75 650 1540 1044
  ....
		

Crossrefs

Cf. A222057-A222064. Row sums are in A222062.

Programs

  • Mathematica
    H2[k_] := (k+1) (HarmonicNumber[k+1] - 1);
    T[n_, k_] := StirlingS2[n, k] k! H2[k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 01 2018 *)
  • PARI
    hyp(n,alpha) = {x= y+O(y^(n+1)); gf = - log(1-x)/(1-x)^alpha; polcoeff(gf, n, y);}
    t(n, k) = {k!*(sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!)*hyp(k,2)};
    \\ Michel Marcus, Feb 09 2013

Formula

T(n,k) = A008277(n,k)*A000142(k)*H2(k) where H2(k) is defined by g.f.:- log(1-x)/(1-x)^2. - Michel Marcus, Feb 09 2013

Extensions

More terms from Michel Marcus, Feb 09 2013
Showing 1-1 of 1 results.