A222066 Decimal expansion of 1/sqrt(128).
0, 8, 8, 3, 8, 8, 3, 4, 7, 6, 4, 8, 3, 1, 8, 4, 4, 0, 5, 5, 0, 1, 0, 5, 5, 4, 5, 2, 6, 3, 1, 0, 6, 1, 2, 9, 9, 1, 0, 6, 0, 4, 4, 9, 2, 2, 1, 1, 0, 5, 9, 2, 5, 4, 5, 7, 3, 5, 4, 2, 4, 8, 3, 6, 2, 4, 4, 2, 0, 7, 7, 9, 9, 0, 3, 8, 8, 1, 6, 8, 9, 9, 2, 8, 1, 4, 9, 2, 2, 0, 8, 9, 5, 4, 7, 7, 5, 9, 8, 2, 9, 5, 9, 3, 8
Offset: 0
Examples
.088388347648318440550105545263106129910604492211...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
Links
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- G. Nebe and N. J. A. Sloane, Home page for D_5 lattice
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Mathematica
Join[{0},RealDigits[1/Sqrt[128],10,120][[1]]] (* Harvey P. Dale, Sep 20 2023 *)
-
PARI
1/sqrt(128) \\ Charles R Greathouse IV, Oct 31 2014
Formula
Equals A020789/2. - R. J. Mathar, Jan 27 2021
Comments