A222069 Decimal expansion of (1/30)*2^(1/2)*Pi^2.
4, 6, 5, 2, 5, 7, 6, 1, 3, 3, 0, 9, 2, 5, 8, 6, 3, 5, 6, 1, 0, 5, 0, 4, 0, 6, 2, 4, 1, 1, 2, 9, 3, 6, 8, 5, 9, 9, 4, 6, 5, 7, 7, 5, 1, 3, 9, 6, 5, 3, 6, 1, 5, 7, 7, 4, 3, 5, 6, 6, 4, 4, 4, 5, 0, 1, 3, 2, 7, 1, 8, 4, 1, 8, 8, 8, 7, 1, 8, 1, 4, 3, 1, 1, 1, 6, 0, 0, 8, 9, 1, 5, 4, 0, 5, 4
Offset: 0
Examples
.46525761330925863561050406241129368599465775139653615774...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
Links
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- G. Nebe and N. J. A. Sloane, Home page for D_5 lattice.
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[(Sqrt[2] Pi^2)/30,10,120][[1]] (* Harvey P. Dale, Nov 07 2021 *)
-
PARI
Pi^2/sqrt(450) \\ Charles R Greathouse IV, Oct 31 2014
Comments