cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222083 Self-convolution cube of A090845.

Original entry on oeis.org

1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, 9560, 16341, 27912, 46383, 76794, 125205, 201580, 322980, 508710, 800495, 1241190, 1916682, 2935492, 4456617, 6747393, 10101532, 15105042, 22378362, 33035166, 48520809, 70776711, 103072393, 148899756
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2013

Keywords

Comments

A090846 gives the positions of where the terms of this sequence are found in A090845.

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 114*x^5 + 230*x^6 +...
Let G(x) = A(x)^(1/3)  denote the g.f. of A090845:
G(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 + 20*x^7 + 22*x^8 + 40*x^9 + 51*x^10 + 67*x^11 + 114*x^12 + 126*x^13 + 203*x^14 +...
then the coefficients of G(x)^2 and G(x)^3 begin:
G(x)^2: [1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, ...];
G(x)^3: [1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, ..];
where the sorted union of these coefficients yield sequence A090845.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1, 1]); for(i=1, #binary(3*n+1), A=vecsort(concat(Vec(Ser(A)^2), Vec(Ser(A)^3)))); Vec(Ser(A)^3)[n+1]}
    for(n=0, 60, print1(a(n), ", "))