A222083 Self-convolution cube of A090845.
1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, 9560, 16341, 27912, 46383, 76794, 125205, 201580, 322980, 508710, 800495, 1241190, 1916682, 2935492, 4456617, 6747393, 10101532, 15105042, 22378362, 33035166, 48520809, 70776711, 103072393, 148899756
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 114*x^5 + 230*x^6 +... Let G(x) = A(x)^(1/3) denote the g.f. of A090845: G(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 + 20*x^7 + 22*x^8 + 40*x^9 + 51*x^10 + 67*x^11 + 114*x^12 + 126*x^13 + 203*x^14 +... then the coefficients of G(x)^2 and G(x)^3 begin: G(x)^2: [1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, ...]; G(x)^3: [1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, ..]; where the sorted union of these coefficients yield sequence A090845.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..10000
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, #binary(3*n+1), A=vecsort(concat(Vec(Ser(A)^2), Vec(Ser(A)^3)))); Vec(Ser(A)^3)[n+1]} for(n=0, 60, print1(a(n), ", "))
Comments