A222084 Number of the least divisors of n whose LCM is equal to n.
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3
Offset: 1
Keywords
Examples
For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8. lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory); A222084:=proc(q) local a,b,c,j,n; print(1); for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0; for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od; a:=op(sort([op(divisors(n))])); b:=nops(divisors(n)); for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end: A222084(100000);
-
Mathematica
Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *)
-
PARI
a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k;} \\ Michel Marcus, Mar 13 2018
Comments