cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222084 Number of the least divisors of n whose LCM is equal to n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3
Offset: 1

Views

Author

Paolo P. Lava, Feb 07 2013

Keywords

Comments

If we write n as the product of its prime factors, n = p1^a1*p2^a2*p3^a3*...*pr^ar, then tau#(n) gives the number of divisors from 1 to max(p1^a1, p2^a2, p3^a3, ..., pr^ar).
In general tau#(n) <= tau(n).
Also, tau#(n) = tau(n) is A000961, tau#(n) < tau(n) is A024619.
For any prime number p tau(p) = tau#(p) = 2.
tau#(n) = 3 only for semiprimes (A001358).

Examples

			For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8.
lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222084:=proc(q)
    local a,b,c,j,n; print(1);
    for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end:
    A222084(100000);
  • Mathematica
    Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *)
  • PARI
    a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k;} \\ Michel Marcus, Mar 13 2018