A222112 Initial step in Goodstein sequences: write n-1 in hereditary binary representation, then bump to base 3.
0, 1, 3, 4, 27, 28, 30, 31, 81, 82, 84, 85, 108, 109, 111, 112, 7625597484987, 7625597484988, 7625597484990, 7625597484991, 7625597485014, 7625597485015, 7625597485017, 7625597485018, 7625597485068, 7625597485069, 7625597485071, 7625597485072, 7625597485095
Offset: 1
Keywords
Examples
n = 19: 19 - 1 = 18 = 2^4 + 2^1 = 2^2^2 + 2^1 -> a(19) = 3^3^3 + 3^1 = 7625597484990; n = 20: 20 - 1 = 19 = 2^4 + 2^1 + 2^0 = 2^2^2 + 2^1 + 2^0 -> a(20) = 3^3^3 + 3^1 + 3^0 = 7625597484991; n = 21: 21 - 1 = 20 = 2^4 + 2^2 = 2^2^2 + 2^2 -> a(21) = 3^3^3 + 3^3 = 7625597485014.
References
- Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944.
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Crossrefs
Programs
-
Haskell
-- See Link
-
PARI
A222112(n)=sum(i=1, #n=binary(n-1), if(n[i],3^if(#n-i<2, #n-i, A222112(#n-i+1)))) \\ See A266201 for more general code. - M. F. Hasler, Feb 13 2017, edited Feb 19 2017
Comments