cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A222154 Numbers n such that there are three distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

3360, 13440, 30240, 43680, 53760, 84000, 120960, 127680, 164640, 174720, 215040, 272160, 336000, 393120, 406560, 483840, 510720, 567840, 658560, 665280, 698880, 756000, 860160, 971040, 1088640, 1092000, 1145760, 1149120, 1212960, 1344000, 1367520, 1481760
Offset: 1

Views

Author

Zdenek Cervenka, Feb 10 2013

Keywords

Examples

			The following 3 triples have a common difference of 3360: (2^2, 58^2, 82^2), (46^2, 74^2, 94^2), and (97^2, 113^2, 127^2).
		

Crossrefs

A214155 Numbers n such that there are five distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

287327040, 294053760, 1149308160, 2585943360, 4597232640, 7183176000, 10343773440, 14079024960, 18388930560, 23273490240, 28732704000, 34766571840, 41375093760, 48558269760, 64648584000, 73555722240, 83037514560, 93093960960, 103725061440
Offset: 1

Views

Author

Zdenek Cervenka, Feb 16 2013

Keywords

Examples

			The following 5 triples all have a common difference of 287327040:
(4342^2, 17498^2, 24362^2), (12454^2, 21034^2, 27014^2), (23266^2, 28786^2, 33406^2), (51778^2, 54482^2, 57058^2), and (57073^2, 59537^2, 61903^2).
		

Crossrefs

A226858 Numbers n such that there are six distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

258594336000, 1034377344000, 2327349024000, 4137509376000, 6464858400000, 9309396096000, 12671122464000, 16550037504000, 20946141216000, 25859433600000
Offset: 1

Views

Author

Zdenek Cervenka, Jun 20 2013

Keywords

Comments

For the first 10 terms we have a(n) = n^2 * a(1). Are there any other primitive terms other than a(1)?

Examples

			These 6 triples have a common difference of 9309396096000: (579774^2, 3105726^2, 4353726^2), (781560^2, 3149640^2, 4385160^2), (2241720^2, 3786120^2, 4862520^2), (4187880^2, 5181480^2, 6013080^2), (9320040^2, 9806760^2, 10270440^2), and (10273140^2, 10716660^2, 11142540^2).
		

Crossrefs

A226954 Numbers n such that there are seven distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

12671122464000, 50684489856000, 114040102176000, 202737959424000, 316778061600000, 456160408704000, 620885000736000, 810951837696000, 1026360919584000, 1267112246400000, 1533205818144000
Offset: 1

Views

Author

Zdenek Cervenka, Jun 26 2013

Keywords

Comments

For the first 11 terms we have a(n) = n^2 * a(1). Are there any other primitive terms other than a(1)?

Examples

			These 7 triples of squares have a common difference of 12671122464000: (676403^2, 3623347^2, 5079347^2), (911820^2, 3674580^2, 5116020^2), (2615340^2, 4417140^2, 5672940^2), (4885860^2, 6045060^2, 7015260^2), (5664815^2, 6690385^2, 7578415^2), (10873380^2, 11441220^2, 11982180^2) and (11985330^2, 12502770^2, 12999630^2).
		

Crossrefs

Showing 1-4 of 4 results.