cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Zdenek Cervenka

Zdenek Cervenka's wiki page.

Zdenek Cervenka has authored 38 sequences. Here are the ten most recent ones:

A368242 Numbers k whose number of proper divisors is greater than sqrt(k).

Original entry on oeis.org

6, 8, 12, 18, 20, 24, 30, 36, 40, 42, 48, 60, 72, 80, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 252, 288, 336, 360, 420, 480, 504, 720, 840
Offset: 1

Author

Zdenek Cervenka, Dec 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000000], Length[Divisors[#]] - 1 > Sqrt[#] &]
  • PARI
    for(k=1,10^6,if(numdiv(k)-1 > sqrtint(k), print1(k,", "))) \\ Joerg Arndt, Jan 06 2024

Formula

12 is a term since it has 5 proper divisors (1,2,3,4,6), and 5 > sqrt(12).

A356410 Numbers k for which k^3 is divisible by sigma(k).

Original entry on oeis.org

1, 6, 28, 30, 84, 102, 120, 364, 420, 496, 672, 840, 1080, 1092, 1320, 1428, 1488, 1782, 2280, 2716, 2760, 3276, 3360, 3444, 3472, 3480, 3720, 4452, 5640, 7080, 7392, 7440, 7560, 8128, 8148, 8736, 8910, 9240, 9480, 10416, 10920, 11880, 12400, 15456, 15960
Offset: 1

Author

Zdenek Cervenka, Aug 05 2022

Keywords

Examples

			30 is a term, because 30^3 = 27000, sigma(30) = 72 and 27000 / 72 = 375.
		

Crossrefs

Programs

  • Maple
    select(t -> t^3 mod numtheory:-sigma(t) = 0, [$1..20000]); # Robert Israel, Sep 16 2022
  • Mathematica
    Select[Range[16000], Divisible[#^3, DivisorSigma[1, #]] &]
    Select[Range[16000],PowerMod[#,3,DivisorSigma[1,#]]==0&] (* Harvey P. Dale, Sep 04 2024 *)
  • PARI
    for(k=1,10^6,if(k^3%sigma(k)==0,print1(k,", "))) \\ Alexandru Petrescu, Sep 10 2022

A351842 Numbers whose sum of digits and number of proper divisors are equal.

Original entry on oeis.org

21, 32, 50, 70, 111, 162, 168, 201, 212, 232, 250, 308, 322, 380, 384, 405, 416, 430, 456, 546, 610, 650, 690, 740, 744, 812, 832, 870, 980, 1004, 1011, 1015, 1053, 1101, 1105, 1222, 1316, 1352, 1365, 1460, 1464, 1482, 1510, 1518, 1550, 1554, 1590, 1608, 1752
Offset: 1

Author

Zdenek Cervenka, Feb 21 2022

Keywords

Examples

			21 is a term since its digits sum to 2 + 1 = 3 and it has three proper divisors (1, 3, and 7).
		

Crossrefs

Programs

  • Maple
    S := n -> add(convert(n, base, 10)):
    PD := n -> nops(NumberTheory[Divisors](n)) - 1:
    a := n -> select(x -> S(x) = PD(x), [seq(1..n)])
  • Mathematica
    Select[Range[1, 1700], Total[IntegerDigits[#]] == Length[Divisors[#]] - 1 &]
  • PARI
    isok(m) = sumdigits(m) == numdiv(m) - 1; \\ Michel Marcus, Feb 21 2022
    
  • PARI
    list(nn) = forcomposite(n=1, nn, if (sumdigits(n) == (numdiv(n) - 1), print1(n, ", ")));
    list(1700);
  • Python
    from sympy import divisor_count
    def ok(n): return sum(map(int, str(n))) == divisor_count(n) - 1
    print([k for k in range(1753) if ok(k)]) # Michael S. Branicky, Feb 21 2022
    

A344347 Numbers k such that sigma(k)^2 is divisible by k-1.

Original entry on oeis.org

2, 3, 5, 10, 33, 55, 82, 129, 136, 145, 261, 351, 385, 406, 442, 513, 649, 897, 1090, 2241, 4726, 5185, 8650, 13601, 17101, 17641, 18241, 26625, 26937, 29697, 29953, 32896, 34561, 35841, 38417, 44955, 46081, 46593, 51985, 63505, 65703, 66249, 84376, 93313, 97903
Offset: 1

Author

Zdenek Cervenka, May 15 2021

Keywords

Examples

			For k=10, sigma(10)^2 / (10-1) = 18^2 / 9 = 324 / 9 = 36.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^5], Divisible[DivisorSigma[1, #]^2, # - 1] &] (* Amiram Eldar, May 15 2021 *)
  • PARI
    list(nn) = for(n=2, nn, if (sigma(n)^2 % (n-1) == 0, print1(n, ", ")))
    list(100000)

A341693 Numbers k whose sum of digits divides sigma(k)-k.

Original entry on oeis.org

1, 6, 10, 14, 20, 24, 26, 30, 38, 42, 44, 60, 78, 90, 100, 102, 106, 110, 112, 114, 120, 121, 132, 150, 153, 176, 182, 190, 198, 202, 204, 210, 220, 222, 224, 240, 244, 258, 260, 264, 268, 270, 272, 280, 285, 294, 298, 306, 312, 314, 330, 332, 334, 360, 361, 393, 395
Offset: 1

Author

Zdenek Cervenka, May 24 2021

Keywords

Examples

			k=10 -> sigma(k)=1+2+5+10=18 sum_digits(k)=1+0=1 -> 18/1 = 18.
k=42 -> sigma(k)=1+2+3+6+7+14+21+42=96 sum_digits(k)=4+2=6 -> 96/6 = 16.
		

Crossrefs

Programs

  • Maple
    isA341693 := proc(n)
        if modp(numtheory[sigma](n)-n,digsum(n)) =0 then
            true;
        else
            false;
        end if
    end proc:
    for n from 1 to 395 do
        if isA341693(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jun 04 2021
  • Mathematica
    Select[Range[400], Divisible[DivisorSigma[1, #] - #, Plus @@ IntegerDigits[#]] &] (* Amiram Eldar, May 24 2021 *)
  • PARI
    list(nn) = for(n=1, nn, if ((sigma(n)-n) % sumdigits(n) == 0, print1(n, ", ")))
    list(1000)

A298563 Numbers k such that k - 2 | sigma(k).

Original entry on oeis.org

1, 3, 5, 6, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752, 15370304, 73995392, 536920064, 2147581952, 34360131584, 27034175140420610, 36028797421617152, 576460753914036224
Offset: 1

Author

Zdenek Cervenka, Jan 21 2018

Keywords

Comments

Similar to A055708.
Sequence includes every number of the form 2^(j-1)*(2^j+3) such that 2^j+3 is prime (i.e., j is a term in A057732); terms of this form are 5, 14, 44, 152, 2144, 8384, 8394752, 536920064, 2147581952, 34360131584, ... - Jon E. Schoenfield, Jan 22 2018
Superset of A125246. - Giovanni Resta, Jan 23 2018
Contains 2 times odd terms of A191363. Also, if m is a term of A056006 and q := (sigma(m) + 2)/m is coprime to m, them q*m is a term. - Max Alekseyev, May 25 2025

Examples

			For k=44, sigma(k)/(k-2) = sigma(44)/(44-2) = 84/42 = 2, so 44 belongs to the sequence;
for k=110, sigma(k)/(k-2) = sigma(110)/(110-2) = 216/108 = 2, so 110 is also a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..10^7]| DivisorSigma(1, n) mod (n-2) eq 0]; // Vincenzo Librandi, Jan 22 2018
  • Mathematica
    Select[Range[10^6], Divisible[DivisorSigma[1, #], # - 2] &] (* Michael De Vlieger, Jan 21 2018 *)
  • PARI
    isok(k) = (k!=2) && !(sigma(k) % (k-2)); \\ Michel Marcus, Jan 22 2018
    

Extensions

a(17)-a(18) from Robert G. Wilson v, Jan 21 2018
a(19) from Giovanni Resta, Jan 23 2018
a(20)-a(22) from Max Alekseyev, May 27 2025

A294149 Numbers k such that the sum of divisors of k is divisible by the sum of nontrivial divisors of k (that is, excluding 1 and k).

Original entry on oeis.org

15, 20, 35, 95, 104, 119, 143, 207, 209, 287, 319, 323, 377, 464, 527, 559, 650, 779, 899, 923, 989, 1007, 1023, 1189, 1199, 1343, 1349, 1519, 1763, 1919, 1952, 2015, 2159, 2507, 2759, 2911, 2915, 2975, 3239, 3599, 3827, 4031, 4199, 4607, 5183, 5207, 5249
Offset: 1

Author

Zdenek Cervenka, Oct 23 2017

Keywords

Comments

Numbers k such that sigma(k)/(sigma(k)-k-1) is a positive integer.

Examples

			15 is in the sequence since sigma(15)/(sigma(15)-15-1) = 24/8 = 3.
		

Crossrefs

Subsequence of A002808 (composite numbers).
Cf. A088831 (k=2), A063906 (k=3).

Programs

  • Mathematica
    Quiet@ Select[Range[2, 5300], And[IntegerQ[#], # > 1] &[#2/(#2 - #1 - 1)] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Oct 24 2017 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, if (denominator(sigma(n)/(sigma(n)-n-1)) == 1, print1(n, ", "))); \\ Michel Marcus, Oct 24 2017
    
  • PARI
    list(lim)=my(v=List(),s,t); forfactored(n=9,lim\1, s=sigma(n); t=s-n[1]-1; if(t && s%t==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 11 2017

Formula

This sequence gives all numbers a(n) in increasing order which satisfy A000203(a(n))/A048050(a(n)) = A000203(a(n))/(A000203(a(n)) - (a(n)+1)) = k(n), with a positive integer k(n) for n >= 1. - Wolfdieter Lang, Nov 10 2017

Extensions

Edited by Wolfdieter Lang, Nov 10 2017
Name corrected by Michel Marcus, Nov 12 2017

A293992 Numbers k such that sigma(k) - k - 1 is a perfect number.

Original entry on oeis.org

8, 115, 187, 1375, 2455, 8143, 13543, 18261, 21103, 23479, 40615, 41623, 43279, 49183, 49441, 51703, 56743, 61063, 61279, 61423, 89287, 95551, 137887, 214303, 331567, 379807, 476071, 715471, 1422871, 1515967, 1793527, 1977127, 2431087, 3098527, 3663871
Offset: 1

Author

Zdenek Cervenka, Oct 21 2017

Keywords

Examples

			sigma(8) - 8 - 1 = 6, a perfect number, so 8 is a term;
sigma(115) - 115 - 1 = 28, a perfect number, so 115 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{pn=PerfectNumber[Range[10]]},Select[Range[37*10^5],MemberQ[pn, DivisorSigma[ 1,#]-#-1]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 04 2019 *)

A226954 Numbers n such that there are seven distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

12671122464000, 50684489856000, 114040102176000, 202737959424000, 316778061600000, 456160408704000, 620885000736000, 810951837696000, 1026360919584000, 1267112246400000, 1533205818144000
Offset: 1

Author

Zdenek Cervenka, Jun 26 2013

Keywords

Comments

For the first 11 terms we have a(n) = n^2 * a(1). Are there any other primitive terms other than a(1)?

Examples

			These 7 triples of squares have a common difference of 12671122464000: (676403^2, 3623347^2, 5079347^2), (911820^2, 3674580^2, 5116020^2), (2615340^2, 4417140^2, 5672940^2), (4885860^2, 6045060^2, 7015260^2), (5664815^2, 6690385^2, 7578415^2), (10873380^2, 11441220^2, 11982180^2) and (11985330^2, 12502770^2, 12999630^2).
		

Crossrefs

A226858 Numbers n such that there are six distinct triples (k, k+n, k+2n) of squares.

Original entry on oeis.org

258594336000, 1034377344000, 2327349024000, 4137509376000, 6464858400000, 9309396096000, 12671122464000, 16550037504000, 20946141216000, 25859433600000
Offset: 1

Author

Zdenek Cervenka, Jun 20 2013

Keywords

Comments

For the first 10 terms we have a(n) = n^2 * a(1). Are there any other primitive terms other than a(1)?

Examples

			These 6 triples have a common difference of 9309396096000: (579774^2, 3105726^2, 4353726^2), (781560^2, 3149640^2, 4385160^2), (2241720^2, 3786120^2, 4862520^2), (4187880^2, 5181480^2, 6013080^2), (9320040^2, 9806760^2, 10270440^2), and (10273140^2, 10716660^2, 11142540^2).
		

Crossrefs