cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222184 Primes p such that q^(p-1) == 1 (mod p^2) for some prime q < p.

Original entry on oeis.org

11, 43, 59, 71, 79, 97, 103, 137, 263, 331, 349, 359, 421, 433, 487, 523, 653, 659, 743, 859, 863, 907, 919, 983, 1069, 1087, 1091, 1093, 1163, 1223, 1229, 1279, 1381, 1483, 1499, 1549, 1657, 1663, 1667, 1697, 1747, 1777, 1787, 1789, 1877, 1993, 2011, 2213, 2221, 2251, 2281, 2309, 2371, 2393, 2473, 2671, 2719, 2777, 2791, 2803, 2833, 2861, 3037, 3079, 3163, 3251, 3257, 3463, 3511, 3557
Offset: 1

Views

Author

Jonathan Sondow, Feb 11 2013

Keywords

Comments

Subsequence of A134307; see its interesting heuristics. (What is the analogous heuristic for the present sequence?)
The smallest corresponding primes q are A222185.

Examples

			3 is a prime < 11, and 11^2 divides 3^(11-1)-1 = 59048 = 121*488, so 11 is a member.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[500]], Product[ PowerMod[ Prime[k], # - 1, #^2] - 1, {k, 1, PrimePi[#] - 1}] == 0 &]
  • PARI
    lista(nn) = {forprime (p=2, nn, ok = 0; forprime(q=2, p-1, if (Mod(q, p^2)^(p-1) == 1, ok=1; break);); if (ok, print1(p, ", ")););} \\ Michel Marcus, Nov 24 2014

Formula

A222185(n)^(a(n)-1) == 1 (mod a(n)^2).