A222184 Primes p such that q^(p-1) == 1 (mod p^2) for some prime q < p.
11, 43, 59, 71, 79, 97, 103, 137, 263, 331, 349, 359, 421, 433, 487, 523, 653, 659, 743, 859, 863, 907, 919, 983, 1069, 1087, 1091, 1093, 1163, 1223, 1229, 1279, 1381, 1483, 1499, 1549, 1657, 1663, 1667, 1697, 1747, 1777, 1787, 1789, 1877, 1993, 2011, 2213, 2221, 2251, 2281, 2309, 2371, 2393, 2473, 2671, 2719, 2777, 2791, 2803, 2833, 2861, 3037, 3079, 3163, 3251, 3257, 3463, 3511, 3557
Offset: 1
Keywords
Examples
3 is a prime < 11, and 11^2 divides 3^(11-1)-1 = 59048 = 121*488, so 11 is a member.
References
- L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- W. Keller and J. Richstein, Fermat quotients that are divisible by p.
Programs
-
Mathematica
Select[ Prime[ Range[500]], Product[ PowerMod[ Prime[k], # - 1, #^2] - 1, {k, 1, PrimePi[#] - 1}] == 0 &]
-
PARI
lista(nn) = {forprime (p=2, nn, ok = 0; forprime(q=2, p-1, if (Mod(q, p^2)^(p-1) == 1, ok=1; break);); if (ok, print1(p, ", ")););} \\ Michel Marcus, Nov 24 2014
Formula
A222185(n)^(a(n)-1) == 1 (mod a(n)^2).
Comments