cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222184 Primes p such that q^(p-1) == 1 (mod p^2) for some prime q < p.

Original entry on oeis.org

11, 43, 59, 71, 79, 97, 103, 137, 263, 331, 349, 359, 421, 433, 487, 523, 653, 659, 743, 859, 863, 907, 919, 983, 1069, 1087, 1091, 1093, 1163, 1223, 1229, 1279, 1381, 1483, 1499, 1549, 1657, 1663, 1667, 1697, 1747, 1777, 1787, 1789, 1877, 1993, 2011, 2213, 2221, 2251, 2281, 2309, 2371, 2393, 2473, 2671, 2719, 2777, 2791, 2803, 2833, 2861, 3037, 3079, 3163, 3251, 3257, 3463, 3511, 3557
Offset: 1

Views

Author

Jonathan Sondow, Feb 11 2013

Keywords

Comments

Subsequence of A134307; see its interesting heuristics. (What is the analogous heuristic for the present sequence?)
The smallest corresponding primes q are A222185.

Examples

			3 is a prime < 11, and 11^2 divides 3^(11-1)-1 = 59048 = 121*488, so 11 is a member.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[500]], Product[ PowerMod[ Prime[k], # - 1, #^2] - 1, {k, 1, PrimePi[#] - 1}] == 0 &]
  • PARI
    lista(nn) = {forprime (p=2, nn, ok = 0; forprime(q=2, p-1, if (Mod(q, p^2)^(p-1) == 1, ok=1; break);); if (ok, print1(p, ", ")););} \\ Michel Marcus, Nov 24 2014

Formula

A222185(n)^(a(n)-1) == 1 (mod a(n)^2).

A222206 Least prime p such that q^(p-1) == 1 (mod p^2) for n primes q < p.

Original entry on oeis.org

2, 11, 349, 13691, 24329
Offset: 0

Views

Author

Jonathan Sondow, Feb 12 2013

Keywords

Comments

I found no new terms < 5*10^6. - J. Stauduhar, Mar 23 2013
a(5) > 13*10^6, if it exists. Note that, up to 13*10^6, the only other prime p (apart 24329) such that the congruence is satisfied for 4 primes q < p is 9656869. - Giovanni Resta, May 23 2017

Examples

			For the prime p = 349, but for no smaller prime, there are 2 primes q = 223 and 317 < p with  q^(p-1) == 1 (mod p^2), so a(2) = 349.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = 2, q = {}}, While[ Count[ PowerMod[ q, p - 1, p^2], 1] != n, q = Join[q, {p}]; p = NextPrime@ p]; p]; Array[f, 5, 0] (* Robert G. Wilson v, Mar 09 2015 *)
  • PARI
    a(n) = {nb = 0; p = 2; while (nb != n, p = nextprime(p+1); nb = 0; forprime(q=2, p-1, if (Mod(q, p^2)^(p-1) == 1, nb ++); if (nb > n, break););); p;} \\ Michel Marcus, Mar 08 2015
Showing 1-2 of 2 results.