A383799 Irregular triangle: T(n,k) gives the number of k-polysticks on edges of the n-cube up to rotational symmetries of the n-cube, with 0 <= k <= A001787(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 6, 14, 24, 32, 25, 13, 5, 1, 1, 1, 1, 1, 4, 10, 35, 131, 510, 1932, 7123, 24466, 76829, 214685, 518820, 1050433, 1727591, 2273998, 2446653, 2212119, 1709579, 1143416, 663450, 335186, 146371, 55327, 17767, 4898, 1103, 226, 35, 7, 1, 1
Offset: 1
Examples
Table begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+---------------------------------------------------------------- 1| 1, 1; 2| 1, 1, 1, 1, 1; 3| 1, 1, 1, 4, 6, 14, 24, 32, 25, 13, 5, 1, 1; 4| 1, 1, 1, 4, 10, 35, 131, 510, 1932, 7123, 24466, 76829, 214685, ...
Formula
A222186(n) = Sum_{k=0..n*2^(n-1)} T(n,k) - Sum_{k=0..(n-1)*2^(n-2)} T(n-1,k) for n >= 2. - Pontus von Brömssen, May 12 2025
Extensions
a(30)-a(40) from Pontus von Brömssen, May 14 2025
a(41)-a(53) from Pontus von Brömssen, Jun 11 2025
Comments