cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222266 Irregular triangle which lists the bi-unitary divisors of n in row n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 8, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1, 2, 3, 5, 6, 10, 15, 30, 1, 31, 1, 2, 4, 8, 16, 32, 1, 3, 11, 33, 1, 2, 17, 34, 1, 5, 7, 35
Offset: 1

Views

Author

R. J. Mathar, May 05 2013

Keywords

Comments

The bi-unitary divisors of n are the divisors of n such that the largest common unitary divisor of d and n/d is 1, indicated by A165430.
The first difference from the triangle A077609 is in row n=16.
The concept of bi-unitary divisors was introduced by Suryanarayana (1972). - Amiram Eldar, Mar 09 2024

Examples

			The table starts
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
  1, 13;
  1, 2, 7, 14;
  1, 3, 5, 15;
  1, 2, 8, 16;
  1, 17;
		

Crossrefs

Cf. A077609, A165430, A188999 (row sums), A286324 (row lengths).

Programs

  • Maple
    # Return set of unitary divisors of n.
    A077610_row := proc(n)
        local u,d ;
        u := {} ;
        for d in numtheory[divisors](n) do
            if igcd(n/d,d) = 1 then
                u := u union {d} ;
            end if;
        end do:
        u ;
    end proc:
    # true if d is a bi-unitary divisor of n.
    isbiudiv := proc(n,d)
        if n mod d = 0 then
            A077610_row(d) intersect A077610_row(n/d) ;
            if % = {1} then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    # Return set of bi-unitary divisors of n
    biudivs := proc(n)
        local u,d ;
        u := {} ;
        for d in numtheory[divisors](n) do
            if isbiudiv(n,d) then
                u := u union {d} ;
            end if;
        end do:
        u ;
    end proc:
    for n from 1 to 35 do
        print(op(biudivs(n))) ;
    end do:
  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[Function[d, Union@ Flatten@ Select[Transpose@ {d, n/d}, Last@ Intersection[f@ #1, f@ #2] == 1 & @@ # &]]@ Select[Divisors@ n, # <= Floor@ Sqrt@ n &], {n, 35}] (* Michael De Vlieger, May 07 2017 *)
  • PARI
    isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1;}
    row(n) = {my(d = divisors(n), f = factor(n), bdiv = []); for(i=1, #d, if(isbdiv(f, d[i]), bdiv = concat(bdiv, d[i]))); bdiv; } \\ Amiram Eldar, Mar 24 2023