cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Steven Finch, Jun 14 1998

Keywords

Comments

Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

Crossrefs

Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.

Programs

  • Haskell
    a004709 n = a004709_list !! (n-1)
    a004709_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA004709 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) > 2 then
                return false;
            end if;
        end do:
        true ;
    end proc:
  • Mathematica
    Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( cvecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) == n
    print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A004709(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022

A077609 Triangle in which n-th row lists infinitary divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1
Offset: 1

Views

Author

Eric W. Weisstein, Nov 11 2002

Keywords

Comments

The first difference from the triangle A222266 (bi-unitary divisors of n) is in row n = 16; indeed, the 16th row of A222266 is (1, 2, 8, 16) while the 16th of this sequence here is (1, 16). - Bernard Schott, Mar 10 2023
The concept of infinitary divisors was introduced by Cohen (1990). - Amiram Eldar, Mar 09 2024

Examples

			The first few rows are:
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
  1, 13;
  1, 2, 7, 14;
  1, 3, 5, 15;
  1, 16;
  1, 17;
		

Crossrefs

Cf. A027750, A037445 (row lengths), A049417 (row sums).
Cf. A222266.

Programs

  • Haskell
    import Data.List ((\\))
    a077609 n k = a077609_row n !! (k-1)
    a077609_row n = filter
       (\d -> d == 1 || null (a213925_row d \\ a213925_row n)) $ a027750_row n
    a077609_tabf = map a077609_row [1..]
    -- Reinhard Zumkeller, Jul 10 2013
    
  • Maple
    # see the function idivisors() in A049417. # R. J. Mathar, Oct 05 2017
  • Mathematica
    f[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; Array[f, 30] // Flatten (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *) (* edited by Michael De Vlieger, Jun 07 2016 *)
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k,2]); bde = binary(valuation(d, f[k,1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)););); return (1);}
    row(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k]));); idiv;} \\ Michel Marcus, Feb 15 2016

A188999 Bi-unitary sigma: sum of the bi-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 27, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 63, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 108, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 119, 84, 144, 68, 90, 96, 144, 72, 150, 74, 114, 104, 100
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2011

Keywords

Comments

The sequence of bi-unitary perfect numbers obeying a(n) = 2*n consists of only 6, 60, 90 [Wall].
Row sum of row n of the irregular table of the bi-unitary divisors, A222266.

Examples

			The divisors of n=16 are d=1, 2, 4, 8 and 16. The greatest common unitary divisor of (1,16) is 1, of (2,8) is 1, of (4,4) is 4, of (8,2) is 1, of (16,1) is 1 (see A165430). So 1, 2, 8 and 16 are bi-unitary divisors of 16, which sum to a(16) = 1 + 2 + 8 + 16 = 27.
		

Crossrefs

Programs

  • Haskell
    a188999 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = (p ^ (e + 1) - 1) `div` (p - 1) - (1 - m) * p ^ e' where
               (e', m) = divMod e 2
    -- Reinhard Zumkeller, Mar 04 2013
    
  • Maple
    A188999 := proc(n) local a,e,p,f; a :=1 ; for f in ifactors(n)[2] do e := op(2,f) ; p := op(1,f) ; if type(e,'odd') then a := a*(p^(e+1)-1)/(p-1) ; else a := a*((p^(e+1)-1)/(p-1)-p^(e/2)) ; end if; end do: a ; end proc:
    seq( A188999(n),n=1..80) ;
  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, # &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 76}] (* Michael De Vlieger, May 07 2017 *)
    a[n_] := If[n==1, 1, Product[{p, e} = pe; If[OddQ[e], (p^(e+1)-1)/(p-1), ((p^(e+1)-1)/(p-1)-p^(e/2))], {pe, FactorInteger[n]}]]; Array[a, 80] (* Jean-François Alcover, Sep 22 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = vecsum(biudivs(n)); \\ Michel Marcus, May 07 2017
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; e = f[i,2]; f[i,1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 09 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A188999(n): return prod((p**(e+1)-1)//(p-1)-(0 if e&1 else p**(e>>1)) for p,e in factorint(n).items()) # Chai Wah Wu, Dec 28 2024

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd, a(p^e) = (p^(e+1)-1)/(p-1) -p^(e/2) if e is even.
a(n) = A000203(n) - A319072(n). - Omar E. Pol, Sep 29 2018
Dirichlet g.f.: zeta(s-1) * zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 2/p^(2*s-1) + 1/p^(3*s-2) + 1/p^(3*s-1) - 1/p^(4*s-2)). - Amiram Eldar, Aug 28 2023

A286324 a(n) is the number of bi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

a(n) is the number of terms of the n-th row of A222266.

Examples

			From _Michael De Vlieger_, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {{1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs. (End)
		

Crossrefs

Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
    f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = #biudivs(n);
    
  • PARI
    a(n)={my(f=factor(n)[,2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)

A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2018

Keywords

Examples

			The table starts
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).

Programs

  • Maple
    A322791 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
  • PARI
    isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
    row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023

A286325 Bi-unitary harmonic numbers.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 672, 2970, 5460, 8190, 9072, 9100, 10080, 15925, 22680, 22848, 27300, 30240, 40950, 45360, 54600, 81900, 95550, 99792, 136500, 163800, 172900, 204750, 208656, 245700, 249480, 312480, 332640, 342720, 385560, 409500, 472500, 491400
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

A number m is a term if the sum of its bi-unitary divisors, A188999(m) divides the product of m by the number of its bi-unitary divisors A286324(m).
Numbers k whose harmonic mean of their bi-unitary divisors, A361782(k)/A361783(k), is an integer. - Amiram Eldar, Mar 24 2023

Crossrefs

Cf. A001599 (Ore harmonic), A006086 (unitary harmonic).

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; bhQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; bhQ[1] = True; Select[Range[10^5], bhQ] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = my(v=biudivs(n)); denominator(n*#v/vecsum(v))==1;

A362852 The number of divisors of n that are both bi-unitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 05 2023

Keywords

Comments

First differs from A061704 at n = 128, and from A304327 and abs(A307428) at n = 64.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a bi-unitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e but k != e/2.
The least term that is higher than 2 is a(64) = 3.
This sequence is unbounded. E.g., a(2^(2^prime(n))) = prime(n).

Examples

			a(8) = 2 since 8 has 2 divisors that are both bi-unitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e] - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2]) - !(f[i, 2] % 2));}

Formula

Multiplicative with a(p^e) = d(e) if e is odd, and d(e)-1 if e is even, where d(k) is the number of divisors of k (A000005).
a(n) = 1 if and only if n is cubefree (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (d(k)+(k mod 2)-1)/p^k) = 1.1951330849... .

A340232 a(n) is the least number with exactly 2*n bi-unitary divisors.

Original entry on oeis.org

2, 6, 32, 24, 512, 96, 8192, 120, 131072, 1536, 2097152, 480, 33554432, 24576, 536870912, 840, 8589934592, 7776, 137438953472, 7680, 2199023255552, 6291456, 35184372088832, 3360, 562949953421312, 100663296, 9007199254740992, 122880, 144115188075855872, 124416
Offset: 1

Views

Author

Amiram Eldar, Jan 01 2021

Keywords

Comments

Every integer except 1 has an even number of bi-unitary divisors.

Examples

			a(1) = 2 since 2 is the least number with 2*1 = 2 bi-unitary divisors, 1 and 2.
a(2) = 6 since 6 is the least number with 2*2 = 4 bi-unitary divisors, 1, 2, 3 and 6.
		

Crossrefs

Subsequence of A025487.
Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A309181 (nonunitary), A340233 (exponential).

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, e]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]);  max = 10; s = Table[0, {max}]; c = 0; n = 2;  While[c < max, i = d[n]/2; If[i <= max && s[[i]] == 0, c++; s[[i]] = n]; n++]; s

Formula

A286324(a(n)) = 2*n and A286324(k) != 2*n for all k < a(n).

A334972 Bi-unitary admirable numbers: numbers k such that there is a proper bi-unitary divisor d of k such that bsigma(k) - 2*d = 2*k, where bsigma is the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

24, 30, 40, 42, 48, 54, 56, 66, 70, 78, 80, 88, 102, 104, 114, 120, 138, 150, 162, 174, 186, 222, 224, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 448, 474, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 672, 678, 720, 726, 762, 780, 786
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper bi-unitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) that are exponentially odd (A268335) are also bi-unitary admirable numbers since all of their divisors are bi-unitary. Terms that are not exponentially odd are 48, 80, 150, 162, 294, 360, 420, 448, 540, 630, 660, 720, 726, 780, 832, 990, ...

Examples

			48 is in the sequence since 48 = 1 + 2 + 3 - 6 + 8 + 16 + 24 is the sum of its proper bi-unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The bi-unitary version of A111592.
Subsequence of A292982.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1000], buAdmQ]

A335215 Bi-unitary Zumkeller numbers: numbers whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Examples

			6 is a term since its set of bi-unitary divisors, {1, 2, 3, 6}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The bi-unitary version of A083207.
Subsequence of A292982.

Programs

  • Mathematica
    uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^3], bzQ]
Showing 1-10 of 28 results. Next