cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A051377 a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012

Examples

			a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
		

Crossrefs

Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.

Programs

  • GAP
    A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]),d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
  • Haskell
    a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
       sum_e p e = sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A051377 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            add(p^d,d=numtheory[divisors](e)) ;
            a := a*% ;
        end do:
        a ;
    end proc:
    seq(A051377(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023

Extensions

More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009

A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014

Examples

			a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
  1:{1}
  2:{2}
  3:{3}
  4:{2, 4}
  5:{5}
  6:{6}
  7:{7}
  8:{2, 8}
  9:{3, 9}
  10:{10}
  11:{11}
  12:{6, 12}
  13:{13}
  14:{14}
  15:{15}
  16:{2, 4, 16}
  17:{17}
  18:{6, 18}
  19:{19}
  20:{10, 20}
  21:{21}
  22:{22}
  23:{23}
  24:{6, 24}
		

Crossrefs

Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.

Programs

  • GAP
    A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
    
  • Haskell
    a049419 = product . map (a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A049419 := proc(n)
        local a;
        a := 1 ;
        for pf in ifactors(n)[2] do
            a := a*numtheory[tau](op(2,pf)) ;
        end do:
        a ;
    end proc:
    seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023

Formula

Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

Extensions

More terms from Jud McCranie, May 29 2000

A056624 Number of unitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Unitary analog of A046951.
The number of exponential divisors (A322791) of n that are cubefree (A004709). - Amiram Eldar, Jun 03 2025

Examples

			n=256, it has 5 square divisors of which only 2,{1,256} are unitary, 3 divisors are not.
n=124 has 2 (1 and 4) square divisors, both of them unitary a(124) = 2.
n=108 has 12 divisors, 4 square divisors: {1,4,9,36} of which 1 and 4 are unitary, 9 and 36 are not. So a(108)=2. The largest unitary square divisor of 108 is 4 with 1 prime divisor so a(108) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    isA056624 := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d and igcd(n/d^2, d) = 1:
    a := n -> nops(select(k -> isA056624(n, k), [seq(1..n)])):  # Peter Luschny, Jun 13 2025
  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, issquare(d))); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from sympy import factorint
    def A056624(n): return 1<Chai Wah Wu, Aug 03 2024
    
  • Python
    def is_A056624(n, d): return gcd(n, d) == d and gcd(n//d, d) == d and gcd(n//(d*d), d) == 1
    def a(n): return len([k for k in range(1, n+1) if is_A056624(n, k)])
    print([a(n) for n in range(1, 106)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (define (A056624 n) (if (= 1 n) n (* (A000079 (A059841 (A067029 n))) (A056624 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = 2^r, where r is the number of prime factors of the largest unitary square divisor of n.
Multiplicative with a(p^e) = 2^(1-(e mod 2)). - Vladeta Jovovic, Dec 13 2002
Dirichlet g.f.: zeta(s)*zeta(2*s)/zeta(3*s). - Werner Schulte, Apr 03 2018
Sum_{k=1..n} a(k) ~ n*Pi^2/(6*zeta(3)) + sqrt(n)*zeta(1/2)/zeta(3/2). - Vaclav Kotesovec, Feb 07 2019
a(n) = 2^A162641(n). - Amiram Eldar, Sep 26 2022
a(n) = A034444(A350388(n)). - Amiram Eldar, Sep 09 2023

Extensions

More terms from Vladeta Jovovic, Dec 13 2002

A049599 Number of (1+e)-divisors of n: if n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 6, 2, 12, 4, 6, 4, 4, 4, 6, 2, 6, 6, 9, 2, 8, 2
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is a (1+e)-divisor if and only if it is a unitary divisor of an exponential divisor of n (see A077610 and A322791). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Haskell
    a049599 = product . map ((+ 1) . a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[n_] := Times @@ (DivisorSigma[0, #] + 1 &)  /@ FactorInteger[n][[All, 2]]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n) = vecprod(apply(x->numdiv(x)+1, factor(n)[, 2])); \\ Amiram Eldar, Aug 13 2023

Formula

If n = Product p(i)^r(i) then a(n) = Product (tau(r(i))+1), where tau(n) = number of divisors of n, cf. A000005. - Vladeta Jovovic, Apr 29 2001

Extensions

More terms from Naohiro Nomoto, Apr 12 2001

A359411 a(n) is the number of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

First differs from A318672 and A325989 at n = 32.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both an infinitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e and the bitwise AND of e and k is equal to k.
The least term that is higher than 2 is a(216) = 4.
The position of the first appearance of a prime p in this sequence is 2^A359081(p), if A359081(p) > -1. E.g., 2^39 = 549755813888 for p = 3, 2^175 = 4.789...*10^52 for p = 5, and 2^1275 = 6.504...*10^383 for p = 7.
This sequence is unbounded since A246600 is unbounded (see A359082).

Examples

			a(8) = 2 since 8 has 2 divisors that are both infinitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sumdiv(n, d, bitand(d, n)==d);
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i,2]));}
    
  • Python
    from math import prod
    from sympy import divisors, factorint
    def A359411(n): return prod(sum(1 for d in divisors(e,generator=True) if e|d == e) for e in factorint(n).values()) # Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = A246600(e).
a(n) = 1 if and only if n is in A138302.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} A246600(k)/p^k) = 1.135514937... .

A348964 Exponential harmonic (or e-harmonic) numbers of type 2: numbers k such that the harmonic mean of the exponential divisors of k is an integer.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

Sándor (2006) proved that all the squarefree numbers are e-harmonic of type 2.
Equivalently, numbers k such that A348963(k) | k * A049419(k).
Apparently, most exponential harmonic numbers of type 1 (A348961) are also terms of this sequence. Those that are not exponential harmonic numbers of type 2 are 1936, 5808, 9680, 13552, 17424, 29040, ...

Examples

			The squarefree numbers are trivial terms. If k is squarefree, then it has a single exponential divisor, k itself, and thus the harmonic mean of its exponential divisors is also k, which is an integer.
12 is a term since its exponential divisors are 6 and 12, and their harmonic mean, 8, is an integer.
		

Crossrefs

A005117 and A348965 are subsequences.
Similar sequences: A001599, A006086, A063947, A286325, A319745.

Programs

  • Mathematica
    f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^(e-#) &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ]

A361255 Triangle read by rows: row n lists the exponential unitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 48, 7, 49, 10, 50, 51, 26, 52, 53, 6, 54, 55, 14, 56, 57, 58, 59
Offset: 1

Views

Author

R. J. Mathar, Mar 06 2023

Keywords

Comments

Starts to differ from A322791 in row n=16, where 4 is an exponential divisor but not an exponential unitary divisor.

Crossrefs

Cf. A322857 (row sums), A278908 (row lengths), A322791 (includes non-unitary exp divs).

Programs

  • Maple
    A361255 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 or igcd(bi,ai/bi) <> 1 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A361255(n)),n=1..60) ;
  • Mathematica
    udivQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m] && CoprimeQ[m, n/m]);
    expuDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[udivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expuDivs[1] = {1};
    expuDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expuDivQ[n, #] &]];
    Table[expuDivs[n], {n, 1, 70}] // Flatten (* Amiram Eldar, Mar 11 2023 *)

A368979 The number of exponential divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A367516 at n = 128, and from A359411 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> numdiv(x >> valuation(x, 2)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001227(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A049419(n), with equality if and only if n is noncomposite (A008578).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13657098749361390865..., where d(k) is the number of odd divisors of k (A001227).

A362852 The number of divisors of n that are both bi-unitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 05 2023

Keywords

Comments

First differs from A061704 at n = 128, and from A304327 and abs(A307428) at n = 64.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a bi-unitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e but k != e/2.
The least term that is higher than 2 is a(64) = 3.
This sequence is unbounded. E.g., a(2^(2^prime(n))) = prime(n).

Examples

			a(8) = 2 since 8 has 2 divisors that are both bi-unitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e] - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2]) - !(f[i, 2] % 2));}

Formula

Multiplicative with a(p^e) = d(e) if e is odd, and d(e)-1 if e is even, where d(k) is the number of divisors of k (A000005).
a(n) = 1 if and only if n is cubefree (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (d(k)+(k mod 2)-1)/p^k) = 1.1951330849... .

A331737 Multiplicative with a(p^e) = p^A000265(e), where A000265(x) gives the odd part of x.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69, 70, 71, 24, 73, 74, 15, 38, 77, 78, 79, 10, 3, 82, 83, 42, 85, 86, 87, 88, 89, 30
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Comments

a(n) is the largest exponential divisor of n (cf. A322791) that is an exponentially odd number (A268335). - Amiram Eldar, Nov 17 2022

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e/2^IntegerExponent[e, 2]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 17 2022 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A331737(n) = { my(f = factor(n)); prod(k=1, #f~, f[k, 1]^A000265(f[k, 2])); };

Formula

a(n) = n / A331738(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1-1/p) * Sum_{k>=1} p^(2^k - 1)/(p^(2^(k+1)-2) - 1)) = 0.3953728204... . - Amiram Eldar, Nov 17 2022
Showing 1-10 of 28 results. Next