cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).

Crossrefs

Cf. A049599, A318671 (numerators), A318673.

Programs

  • PARI
    up_to = (2^16)+1;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
    v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
    A318671(n) = numerator(v318671_62[n]);
    A318672(n) = denominator(v318671_62[n]);
    A318673(n) = valuation(A318672(n),2);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318673(n).

A318671 Numerators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Crossrefs

Cf. A049599, A318672 (denominators).

Programs

  • PARI
    up_to = (2^16)+1;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
    v318671_72 = DirSqrt(vector(up_to, n, A049599(n)));
    A318671(n) = numerator(v318671_72[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d 1.

A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Steven Finch, Jun 14 1998

Keywords

Comments

Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

Crossrefs

Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.

Programs

  • Haskell
    a004709 n = a004709_list !! (n-1)
    a004709_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA004709 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) > 2 then
                return false;
            end if;
        end do:
        true ;
    end proc:
  • Mathematica
    Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( cvecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) == n
    print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A004709(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022

A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014

Examples

			a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
  1:{1}
  2:{2}
  3:{3}
  4:{2, 4}
  5:{5}
  6:{6}
  7:{7}
  8:{2, 8}
  9:{3, 9}
  10:{10}
  11:{11}
  12:{6, 12}
  13:{13}
  14:{14}
  15:{15}
  16:{2, 4, 16}
  17:{17}
  18:{6, 18}
  19:{19}
  20:{10, 20}
  21:{21}
  22:{22}
  23:{23}
  24:{6, 24}
		

Crossrefs

Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.

Programs

  • GAP
    A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
    
  • Haskell
    a049419 = product . map (a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A049419 := proc(n)
        local a;
        a := 1 ;
        for pf in ifactors(n)[2] do
            a := a*numtheory[tau](op(2,pf)) ;
        end do:
        a ;
    end proc:
    seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023

Formula

Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

Extensions

More terms from Jud McCranie, May 29 2000

A051378 Sum of (1+e)-divisors of n. Let n = Product_i p(i)^r(i) then (1+e)-sigma(n) = Product_i (1 + Sum_{s|r(i)} p(i)^s).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a051378 n = product $ zipWith sum_1e (a027748_row n) (a124010_row n)
       where sum_1e p e = 1 + sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A051378 := proc(n)
        local a,d,p,e,sp;
        a := 1;
        for d in ifactors(n)[2] do
            p := op(1,d) ;
            e := op(2,d) ;
            sp := 1;
            for s in numtheory[divisors](e) do
                sp := sp+p^s ;
            end do:
            a := a*sp ;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p+1; a[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)+1) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

Multiplicative with a(p^e) = 1 + Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = Sum_{d|n, gcd(d, n/d) = 1} A051377(d). - Daniel Suteu, Nov 01 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + (1-1/p)*Sum_{k>=2} p^k/(p^(2*k)-1)) = 0.76636964336546210751... . - Amiram Eldar, Oct 31 2023

Extensions

Corrected and extended by Naohiro Nomoto, Apr 12 2001

A072911 Number of "phi-divisors" of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 21 2002

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i), = s(i)<=r(i) and gcd(s(i), r(i)) = 1, then d is a phi-divisor of n.
The integers n = Product_{i=1..r} p_i^{a_i} and m = Product_{i=1..r} p_i^{b_i}, a_i, b_i >= 1 (1 <= i <= r) having the same prime factors are called exponentially coprime, if gcd(a_i, b_i) = 1 for every 1 <= i <= r, i.e., the only common exponential divisor of n and m is Product_{i=1..r} p_i = the common squarefree kernel of n and m, cf. A049419, A007947. The terms of this sequence count the divisors d of n such that d and n are exponentially coprime. - Laszlo Toth, Oct 06 2008

References

  • József Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math., 41 (1996), 91-94. [Laszlo Toth, Oct 06 2008]

Crossrefs

Programs

  • Haskell
    a072911 = product . map (a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A072911 := proc(n)
        local a, p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*numtheory[phi](op(2, p)) ;
        od:
        a ;
    end:
    seq(A072911(n),n=1..100) ; # R. J. Mathar, Sep 25 2008
  • Mathematica
    a[n_] := Times @@ EulerPhi[FactorInteger[n][[All, 2]]];
    Array[a, 105] (* Jean-François Alcover, Nov 16 2017 *)

Formula

If n = Product p(i)^r(i) then a(n) = Product (phi(r(i))), where phi(k) is the Euler totient function of k, cf. A000010.
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/5+eps)), where c_1 = A327838 (Tóth, 2004). - Amiram Eldar, Oct 30 2022

Extensions

More terms from R. J. Mathar, Sep 25 2008

A282446 Call d a recursive divisor of n iff the p-adic valuation of d is a recursive divisor of the p-adic valuation of n for any prime p dividing d; a(n) gives the number of recursive divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2017

Keywords

Comments

More informally, the prime tower factorization of a recursive divisor of n can be obtained by removing branches from the prime tower factorization of n (the prime tower factorization of a number is defined in A182318).
A recursive divisor of n is also a divisor of n, hence a(n)<=A000005(n) for any n, with equality iff n is cubefree (i.e. n belongs to A004709).
A recursive divisor of n is also a (1+e)-divisor of n, hence a(n)<=A049599(n) for any n, with equality iff the p-adic valuation of n is cubefree for any prime p dividing n.
This sequence first differs from A049599 at n=256: a(256)=4 whereas A049599(256)=5; note that 256=2^(2^3), and 2^3 is not cubefree.

Examples

			The recursive divisors of 40 are: 1, 2, 5, 8, 10 and 40, hence a(40)=6.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Times @@ (1 + a/@ (Last /@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Apr 12 2020 *)
  • PARI
    a(n) = my (f=factor(n)); return (prod(i=1, #f~, 1+a(f[i,2])))

Formula

Multiplicative, with a(p^k)=1+a(k) for any prime p and k>0.
a(A014221(n))=n+1 for any n>=0.

A061389 Number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 10, 2, 4, 4, 4, 2, 8, 2, 6
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2001

Keywords

Comments

d is called a (1+phi)-divisor of a number n with prime factorization n = Product p(i)^r(i) if d|n and d = Product p(i)^s(i), where s(i)=0 or GCD(s(i),r(i))=1.
a(n) is odd iff n is a 3-full number (cf. A036966).

Crossrefs

Programs

  • Haskell
    a061389 = product . map ((+ 1) . a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Mathematica
    f[p_, e_] := EulerPhi[e] + 1; a[1] = 1; a[n_] := Times @@ ( f @@@ FactorInteger[n] ); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)

Formula

Multiplicative with a(p^e) = A000010(e)+1.

A353898 a(n) is the number of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A049599 and A282446 at n=32.

Examples

			The divisors of 8 are 1, 2 = 2^1, 4 = 2^2 and 8 = 2^3. 3 of these divisors, 1, 2 and 4, are in A138302. Therefore, a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = floor(log_2(e)) + 2.
a(n) > 1 for n > 1 and a(n) = 2 if and only if n is a prime.
a(n) = A000005(n) if and only if n is cubefree (A004709).

A366901 The number of exponentially odious divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, from A365551 at n = 64, and from A353898 at n = 128.
The number of divisors of n that are exponentially odious numbers (A270428), i.e., numbers having only odious (A000069) exponents in their canonical prime factorization.
The sum of these divisors is A366903(n) and the largest of them is A366905(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || EvenQ[DigitCount[e + 1, 2, 1]], 1, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = 1 + n\2 + (n%2 || hammingweight(n+1)%2==0); \\ after Charles R Greathouse IV at A115384
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A115384(e) + 1.
a(n) <= A000005(n), with equality if and only if n is a cubefree number (A004709).
Showing 1-10 of 19 results. Next