cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A349284 Numbers k such that A051378(k) > 2*k and A333926(k) <= 2*k.

Original entry on oeis.org

126720, 134400, 149760, 188160, 195840, 456960, 510720, 549120, 618240, 718080, 748800, 779520, 802560, 833280, 940800, 979200, 994560, 1094400, 1102080, 1155840, 1263360, 1324800, 1393920, 1424640, 1585920, 1639680, 1670400, 1785600, 1800960, 1908480, 1946880
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

(1+e)-abundant numbers are numbers k such that A051378(k) > 2*k, i.e., numbers k whose sum of (1+e)-divisors exceeds 2*k.
Since all the recursive divisors (see A282446) of a number are also its (1+e)-divisors, the sequence of (1+e)-abundant numbers includes all the recursive abundant numbers (A333928). The first 21387 (1+e)-abundant numbers are also recursive abundant numbers. Therefore, this sequence includes only the (1+e)-abundant numbers that are not recursive abundant numbers.

Examples

			126720 is a term since A051378(126720) = 261144 > 2*126720 = 253440 and A333926(126720) = 246168 < 253440.
		

Crossrefs

Programs

  • Mathematica
    oesigma[1] = 1; oesigma[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recsigma[1] = 1; recsigma[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^6], oesigma[#] > 2*# && recsigma[#] <= 2*# &]

A349283 Numbers k such that A051378(k) = A051378(k+1).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 61183, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 104192, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

First differs from A333949 at n = 18.

Examples

			14 is a term since A051378(14) = A051378(15) = 24.
		

Crossrefs

Cf. A051378.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    s[1] = 1; s[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[2*10^5], s[#] == s[#+1] &]

A051377 a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012

Examples

			a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
		

Crossrefs

Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.

Programs

  • GAP
    A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]),d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
  • Haskell
    a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
       sum_e p e = sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A051377 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            add(p^d,d=numtheory[divisors](e)) ;
            a := a*% ;
        end do:
        a ;
    end proc:
    seq(A051377(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023

Extensions

More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009

A049599 Number of (1+e)-divisors of n: if n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 6, 2, 12, 4, 6, 4, 4, 4, 6, 2, 6, 6, 9, 2, 8, 2
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is a (1+e)-divisor if and only if it is a unitary divisor of an exponential divisor of n (see A077610 and A322791). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Haskell
    a049599 = product . map ((+ 1) . a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[n_] := Times @@ (DivisorSigma[0, #] + 1 &)  /@ FactorInteger[n][[All, 2]]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n) = vecprod(apply(x->numdiv(x)+1, factor(n)[, 2])); \\ Amiram Eldar, Aug 13 2023

Formula

If n = Product p(i)^r(i) then a(n) = Product (tau(r(i))+1), where tau(n) = number of divisors of n, cf. A000005. - Vladeta Jovovic, Apr 29 2001

Extensions

More terms from Naohiro Nomoto, Apr 12 2001

A241405 Sum of modified exponential divisors: if n = Product p_i^r_i then me-sigma(x) = Product (sum p_i^s_i such that s_i+1 divides r_i+1).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144, 72, 110, 74, 114, 104, 100, 96, 168, 80
Offset: 1

Views

Author

Andrew Lelechenko, May 06 2014

Keywords

Comments

The modified exponential divisors of a number n = product p_i^r_i are all numbers of the form product p_i^s_i such that s_i+1 divides r_i+1 for each i.
The concept of modified exponential divisors simplifies combinatorial problems on the sum of exponential divisors A051377 such as a search of e-perfect numbers. Each primitive e-perfect number A054980 corresponds to a unique me-perfect number of smaller magnitude.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A241405(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)))}

Formula

a(n / A007947(n)) = A051377(n).
Multiplicative with a(p^a) = sum p^b such that b+1 divides a+1.

Extensions

More terms from Antti Karttunen, Nov 23 2017
Incorrect comment removed by Amiram Eldar, Dec 14 2024

A333926 The sum of recursive divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The definition of recursive divisors and the number of recursive divisors of n are in A282446.
First differs from A051378 at n = 256.

Examples

			The recursive divisors of 8 are 1, 2 and 8, therefore a(8) = 1 + 2 + 8 = 11.
		

Crossrefs

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]

Formula

Multiplicative with a(p^k) = 1 + Sum_{d recursive divisor of k} p^d.
a(n) <= A051378(n) <= A000203(n).

A049603 (1+e)-sigma perfect numbers: (1+e) - sigma(x) = 2*x.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 6499584, 151062912, 2171581440, 4686409728, 316023611904
Offset: 1

Views

Author

Keywords

Comments

The function (1+e) - sigma(n) is defined in A051378. This sequence lists solutions to A051378(n) = 2*n.
a(12) > 10^12. - Giovanni Resta, Jun 12 2016

Examples

			Factorizations: 2*3, 2^2*7, 2^3*3*11, 2^4*3*23, 2^5*3*5*7, 2^6*3*5*79, 2^8*3^2*7*13*31, 2^7*3^2*7*11*13*131, 2^10*3*5*7*19*1063.
		

Crossrefs

Programs

  • Mathematica
    (* Assuming all terms greater than 28 are multiple of 24 *) ok[n_] := 2*n == Times @@ (1 + Sum[First[#]^s, {s, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Reap[For[n = 2, n <= 2171581440, n = n + If[n < 48, 1, 24], If[ok[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 26 2012 *)

Extensions

151062912 inserted by Jean-François Alcover, Jun 26 2012
a(10)-a(11) from Giovanni Resta, Jun 12 2016

A053784 Harmonic means of (1+e)-divisors of (1+e)-harmonic numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 9, 10, 11, 15, 15, 14, 8, 9, 17, 17, 12, 21, 19, 16, 14, 18, 29, 26, 29, 21, 20, 17, 24, 28, 22, 27, 39, 24, 30, 42, 23, 42, 48, 33, 26, 54, 41, 35, 37, 36, 34, 39, 31, 44, 40, 36, 38, 46, 51, 55, 77, 41, 60, 77, 54, 57, 88, 47, 43, 45, 46, 99
Offset: 1

Views

Author

Naohiro Nomoto, Apr 14 2001

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (DivisorSigma[0, e] + 1)/(p^e + DivisorSum[e, p^(e - #) &]); h[n_] := n*Times @@ (f @@@ FactorInteger[n]); Select[h /@ Range[10^5], IntegerQ] (* Amiram Eldar, Sep 07 2019*)

Extensions

More terms from Amiram Eldar, Sep 07 2019

A053783 (1+e)-harmonic numbers: harmonic mean of (1+e)-divisors is an integer.

Original entry on oeis.org

1, 6, 28, 140, 728, 1638, 2184, 3640, 8008, 8190, 10920, 18620, 23808, 23895, 27846, 37128, 47790, 55860, 69160, 148960, 166656, 189810, 237510, 242060, 316680, 334530, 359600, 406215, 446880, 484120, 525690, 669060, 726180, 1029952, 1078800, 1089270, 1099170
Offset: 1

Views

Author

Naohiro Nomoto, Apr 14 2001

Keywords

Comments

If k = Product p(i)^r(i), d = Product p(i)^s(i) and s(i) = 0 or s(i) divides r(i), then d is a (1+e)-divisor of k.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (DivisorSigma[0, e] + 1)/(p^e + DivisorSum[e, p^(e - #) &]); aQ[n_] := IntegerQ[n * Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 07 2019 *)

Extensions

More terms from Amiram Eldar, Sep 07 2019

A069915 Sum of (1+phi)-divisors of n (cf. A061389).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 11, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 31, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 44, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 35, 84, 144, 68, 54, 96, 144, 72
Offset: 1

Views

Author

Vladeta Jovovic, Apr 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a069915 n = product $ zipWith sum_1phi (a027748_row n) (a124010_row n)
       where sum_1phi p e = 1 + sum [p ^ k | k <- a038566_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p + 1; a[n_] := Times @@ (1 + Sum[If[GCD[k, Last[#]] == 1, First[#]^k, 0], {k, 1, Last[#]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], (gcd(k, f[i, 2]) == 1) * f[i, 1]^k));} \\ Amiram Eldar, Aug 15 2023

Formula

Multiplicative with a(p^e) = 1+Sum_{k=1..e, gcd(k, e)=1} p^k.
Showing 1-10 of 17 results. Next