cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A323757 Modified exponential perfect numbers: numbers k such that A241405(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 264, 3960, 8736, 87360, 131040, 1868160
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

Each term of this sequence corresponds to a primitive e-perfect number (A054980, see formula and Andrew Lelechenko's comment in A241405).
Also in the sequence are 1028004440830371164160, 20546724596095746048000, and 146361946186458562560000 (corresponding to the 3 additional terms of A054980 given by Andrew Lelechenko). - Amiram Eldar, Jul 18 2019

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; mesigma[1]=1; mesigma[n_] := Times @@ f @@@FactorInteger@n; mePerfectQ[n_] := mesigma[n]==2n; Select[Range[10000], mePerfectQ]
  • PARI
    f(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)));} \\ A241405
    isok(n) = f(n) == 2*n; \\ Michel Marcus, Jan 30 2019

Formula

a(n) = A003557(A054980(n)).

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A379031 Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

First differs from its subsequences A112643 and A249263 at n = 51: a(51) = 195195 is not a term of these two sequences.
First differs from its subsequence A129485 at n = 363: a(363) = 2537535 is not a term of A129485.
First differs from A339938 at n = 28: A339938(28) = 75075 is not a term of this sequence.
First differs from A360526 at n = 46: A360526(46) = 165165 is not a term of this sequence.

Crossrefs

Intersection of A005408 and A379029.
Subsequence of A005231.
Subsequences: A112643, A129485, A249263.
Cf. A241405.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ]
  • PARI
    is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k);

A379030 Nonsquarefree modified exponential abundant numbers: nonsquarefree numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

120, 150, 168, 270, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1320, 1380, 1386, 1428, 1470, 1530, 1560, 1596, 1638, 1650, 1710, 1734, 1740, 1848, 1860, 1890, 1950, 2040, 2058, 2070, 2142, 2166, 2184, 2220, 2280, 2394
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are also modified exponential abundant numbers (A379029). This sequence lists the terms of A379029 that are not in A087248.
The numbers of terms that do no exceed 10^k, for k = 3, 4, ..., are 14, 211, 2090, 21236, 212744, 2123071, 21235175, 212450318, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0212... .

Crossrefs

Intersection of A013929 and A379029.
Complement of A087248 within A379029.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; nsmeAbQ[n_] := !SquareFreeQ[n] && mesigma[n] > 2*n; Select[Range[2400], nsmeAbQ]
  • PARI
    is(n) = {my(f=factor(n)); if(issquarefree(f), 0, prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n);}

A379032 Numbers k such that k and k+1 have an equal sum of modified exponential divisors: A241405(k) = A241405(k+1).

Original entry on oeis.org

14, 44, 957, 1334, 1485, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 4136, 5547, 8495, 8636, 8907, 9844, 11515, 12256, 14876, 15608, 19491, 20145, 20155, 27519, 27643, 33998, 35235, 36575, 38180, 41265, 41547, 42818, 45716, 48364, 74918, 79316, 79826, 79833, 84134
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Crossrefs

Cf. A241405.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := mesigma[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], mesigma[#] == mesigma[#+1] &]
  • PARI
    mesigma(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))); }
    lista(kmax) = {my(m1 = 1, m2); for(k = 2, kmax, m2 = mesigma(k); if(m1 == m2, print1(k-1, ", ")); m1 = m2);}

A379027 Irregular table read by rows in which the n-th row lists the modified exponential divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 8, 24, 1, 25, 1, 2, 13, 26, 1, 3, 27, 1, 4, 7, 28
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

If the prime factorization of n is Product_{i} p_i^e_i, then the modified exponential divisors of n are all the divisors of n that are of the form Product_{i} p_i^b_i such that 1 + b_i | 1 + e_i for all i.

Examples

			The table starts:
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
		

Crossrefs

Cf. A379028 (row lengths), A241405 (row sums).
Similar tables: A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary), A322791 (exponential), A361255 (exponential unitary).

Programs

  • Mathematica
    modexpDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[Divisible, {f[[;; , 2]] + 1, IntegerExponent[d, f[[;; , 1]]] + 1}]]; row[1] = {1}; row[n_] := Select[Divisors[n], modexpDivQ[n, #] &]; Table[row[n], {n, 1, 28}] // Flatten
  • PARI
    ismodexpdiv(f, d) = {my(e); for(i=1, #f~, e = valuation(d, f[i, 1]); if((f[i, 2]+1) % (e+1), return(0))); 1; }
    row(n) = {my(f = factor(n), d = divisors(f), mediv = [1]); if(n == 1, return(mediv)); for(i=2, #d, if(ismodexpdiv(f, d[i]), mediv = concat(mediv, d[i]))); mediv; }

A241757 Numbers n such that 2n is a sum of two primes, the adding of which requires only one carry in binary.

Original entry on oeis.org

2, 11, 15, 23, 27, 29, 39, 45, 47, 51, 55, 57, 59, 63, 71, 77, 87, 95, 99, 103, 105, 107, 111, 115, 117, 119, 123, 125, 127, 131, 135, 137, 143, 147, 149, 155, 159, 165, 171, 173, 175, 177, 179, 183, 185, 187, 189, 191, 197, 203, 207, 215, 219, 221, 223, 225
Offset: 1

Views

Author

Vladimir Shevelev, Apr 28 2014

Keywords

Comments

Apart from a(1), both primes are 1 mod 4, hence 2 is the only even term in the sequence. - Charles R Greathouse IV, Apr 29 2014

Examples

			2 is in the sequence since 2*2=2+2 is a sum of two primes and adding 2+2 requires only one carry in binary.
		

Crossrefs

Cf. A241405.

Programs

  • PARI
    is(n)=if(n%2==0, return(n==2)); forprime(p=2,n,if(p%4==1 && isprime(2*n-p) && bitand(p, 2*n-p)==1, return(1))); 0 \\ Charles R Greathouse IV, Apr 29 2014
    
  • PARI
    MSB(n)=2^(#binary(n)-1);
    is(n)={
        if(n%2==0, return(n==2));
        my(V=(n - MSB(n))>>1, k=0);
        while(k=bitand(k-V,V),    \\ Note: assignment, not comparison
            my(p=4*k+1,q=2*n-p);
            if(isprime(p) && isprime(q), return(1))
        );
        0
    }; \\ Charles R Greathouse IV, Apr 30 2014

Extensions

More terms from Peter J. C. Moses, Apr 29 2014

A241758 Smallest prime in representation 2*A241757(n) by sum of two primes, the adding of which in binary requires only one carry.

Original entry on oeis.org

2, 5, 13, 5, 17, 17, 5, 17, 5, 5, 13, 17, 5, 13, 5, 17, 37, 17, 5, 13, 17, 17, 29, 37, 41, 5, 5, 17, 13, 5, 13, 17, 5, 37, 41, 17, 5, 73, 5, 89, 13, 97, 5, 13, 17, 37, 41, 29, 137, 5, 5, 41, 5, 41, 13, 193, 5, 5, 17, 193, 17, 17, 37, 41, 37, 97, 53, 73, 53, 5
Offset: 1

Views

Author

Vladimir Shevelev, Apr 28 2014

Keywords

Examples

			a(2)=5, since A241757(2)=22=5+17, and in binary in sum of 101+10001 involves only one carry.
		

Crossrefs

Formula

2||Binomial(2*A241757(n), a(n)). Indeed, from the Kummer theorem (see reference) 2^t||Binomial(n,x) if and only if in adding x and n-x in binary we have exactly t carries. A proof of the Kummer theorem in arbitrary base one can find in [Fraenkel & Kontorovich].

Extensions

More terms from Peter J. C. Moses, Apr 29 2014

A323758 Lesser of modified exponential amicable pairs.

Original entry on oeis.org

114, 366, 1140, 3660, 3864, 5016, 11040, 16104, 16536, 44772, 57960, 67158, 68640, 142290, 142310, 180960, 196248, 198990, 240312, 248040, 308220, 322080, 326424, 339822, 348840, 352632, 366792, 462330, 669900, 671580, 785148, 815100, 817440, 849240, 912072
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

A modified exponential amicable pair (m, n) has A241405(m) = A241405(n) = m + n + 1.
The larger counterparts are in A323759.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; mesigma[1]=1; mesigma[n_] := Times @@ f @@@FactorInteger@ n; s={}; mes[n_] := mesigma[n]-n; Do[m=mes[n]; If[m>n && mes[m]==n, AppendTo[s, n]], {n,1,10000}]; s
  • PARI
    f(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)));} \\ A241405
    fm(n) = f(n) - n;
    isok(n) = my(fn=fm(n)); (fn > n) && (fm(fn) == n); \\ Michel Marcus, Jan 30 2019

A323759 Larger of modified exponential amicable pairs.

Original entry on oeis.org

126, 378, 1260, 3780, 4584, 5544, 11424, 16632, 16728, 49308, 68760, 73962, 88608, 179118, 168730, 212160, 225096, 256338, 266568, 250920, 365700, 374304, 391656, 374418, 387720, 386568, 393528, 548550, 827700, 739620, 827652, 932100, 912288, 935400, 1052088
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

A modified exponential amicable pair (m, n) has A241405(m) = A241405(n) = m + n + 1.
The lesser counterparts are in A323758.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; mesigma[1]=1; mesigma[n_] := Times @@ f @@@FactorInteger@ n; s={}; mes[n_] := mesigma[n]-n; Do[m=mes[n]; If[m>n && mes[m]==n, AppendTo[s, m]], {n,1,10000}]; s
  • PARI
    f(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)));} \\ A241405
    fm(n) = f(n) - n;
    isok(n) = my(fn=fm(n)); (fn > 0) && (fn < n) && (fm(fn) == n); \\ Michel Marcus, Jan 30 2019
Showing 1-10 of 11 results. Next