A322609 Numbers k such that s(k) = 2*k, where s(k) is the sum of divisors of k that have a square factor (A162296).
24, 54, 112, 150, 294, 726, 1014, 1734, 1984, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 19900, 20886, 22326, 26934, 30246, 31974, 32512, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206
Offset: 1
Keywords
Examples
24 is a term since A162296(24) = 48 = 2*24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12091 (terms below 10^11; terms 1..300 from Robert Israel)
Crossrefs
Programs
-
Maple
filter:= proc(n) convert(remove(numtheory:-issqrfree,numtheory:-divisors(n)),`+`)=2*n end proc: select(filter, [$1..200000]); # Robert Israel, Jan 06 2019
-
Mathematica
s[1]=0; s[n_] := DivisorSigma[1,n] - Times@@(1+FactorInteger[n][[;;,1]]); Select[Range[10000], s[#] == 2# &]
-
PARI
s(n) = sumdiv(n, d, d*(1-moebius(d)^2)); \\ A162296 isok(n) = s(n) == 2*n; \\ Michel Marcus, Dec 20 2018
-
Python
from sympy import divisors, factorint A322609_list = [k for k in range(1,10**3) if sum(d for d in divisors(k,generator=True) if max(factorint(d).values(),default=1) >= 2) == 2*k] # Chai Wah Wu, Sep 19 2021
Comments