cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322609 Numbers k such that s(k) = 2*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

24, 54, 112, 150, 294, 726, 1014, 1734, 1984, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 19900, 20886, 22326, 26934, 30246, 31974, 32512, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2018

Keywords

Comments

This sequence is infinite since 6*p^2 is included for all primes p. Terms that are not of the form 6*p^2: 112, 1984, 19900, 32512, 134201344, ...
Includes 4*k if k is an even perfect number: see A000396. - Robert Israel, Jan 06 2019
From Amiram Eldar, Oct 01 2022: (Start)
24 = 6*prime(1)^2 = 4*A000396(1) is the only term that is common to the two forms that are mentioned above.
19900 is the only term below 10^11 which is not of any of these two forms. Are there any other such terms?
All the known nonunitary perfect numbers (A064591) are also of the form 4*k, where k is an even perfect number.
Equivalently, numbers k such that A325314(k) = -k. (End)

Examples

			24 is a term since A162296(24) = 48 = 2*24.
		

Crossrefs

Subsequence of A005101 and A013929.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), this sequence (m=2), A357493 (m=3), A357494 (m=4).

Programs

  • Maple
    filter:= proc(n) convert(remove(numtheory:-issqrfree,numtheory:-divisors(n)),`+`)=2*n end proc:
    select(filter, [$1..200000]); # Robert Israel, Jan 06 2019
  • Mathematica
    s[1]=0; s[n_] := DivisorSigma[1,n] - Times@@(1+FactorInteger[n][[;;,1]]); Select[Range[10000], s[#] == 2# &]
  • PARI
    s(n) = sumdiv(n, d, d*(1-moebius(d)^2)); \\ A162296
    isok(n) = s(n) == 2*n; \\ Michel Marcus, Dec 20 2018
    
  • Python
    from sympy import divisors, factorint
    A322609_list = [k for k in range(1,10**3) if sum(d for d in divisors(k,generator=True) if max(factorint(d).values(),default=1) >= 2) == 2*k] # Chai Wah Wu, Sep 19 2021

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A323758 Lesser of modified exponential amicable pairs.

Original entry on oeis.org

114, 366, 1140, 3660, 3864, 5016, 11040, 16104, 16536, 44772, 57960, 67158, 68640, 142290, 142310, 180960, 196248, 198990, 240312, 248040, 308220, 322080, 326424, 339822, 348840, 352632, 366792, 462330, 669900, 671580, 785148, 815100, 817440, 849240, 912072
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

A modified exponential amicable pair (m, n) has A241405(m) = A241405(n) = m + n + 1.
The larger counterparts are in A323759.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; mesigma[1]=1; mesigma[n_] := Times @@ f @@@FactorInteger@ n; s={}; mes[n_] := mesigma[n]-n; Do[m=mes[n]; If[m>n && mes[m]==n, AppendTo[s, n]], {n,1,10000}]; s
  • PARI
    f(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)));} \\ A241405
    fm(n) = f(n) - n;
    isok(n) = my(fn=fm(n)); (fn > n) && (fm(fn) == n); \\ Michel Marcus, Jan 30 2019

A323759 Larger of modified exponential amicable pairs.

Original entry on oeis.org

126, 378, 1260, 3780, 4584, 5544, 11424, 16632, 16728, 49308, 68760, 73962, 88608, 179118, 168730, 212160, 225096, 256338, 266568, 250920, 365700, 374304, 391656, 374418, 387720, 386568, 393528, 548550, 827700, 739620, 827652, 932100, 912288, 935400, 1052088
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

A modified exponential amicable pair (m, n) has A241405(m) = A241405(n) = m + n + 1.
The lesser counterparts are in A323758.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; mesigma[1]=1; mesigma[n_] := Times @@ f @@@FactorInteger@ n; s={}; mes[n_] := mesigma[n]-n; Do[m=mes[n]; If[m>n && mes[m]==n, AppendTo[s, m]], {n,1,10000}]; s
  • PARI
    f(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)));} \\ A241405
    fm(n) = f(n) - n;
    isok(n) = my(fn=fm(n)); (fn > 0) && (fn < n) && (fm(fn) == n); \\ Michel Marcus, Jan 30 2019

A349019 Modified e-perfect numbers: numbers k such that A348963(k) | k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2021

Keywords

Comments

First differs from A225354 at n = 25.
Not to be confused with modified exponential perfect numbers (A323757).
Sándor (2006) showed that the exponential harmonic numbers of type 2 (A348964) are terms in this sequence.
All the squarefree numbers are terms (A005117), since A348963(k) = 1 if k is squarefree.

Examples

			12 is a term since A348963(12) = 3 is a divisor of 12.
		

Crossrefs

A005117, A348964 and A349020 are subsequences.

Programs

  • Mathematica
    f[p_, e_] := p^e/DivisorSum[e, p^(e - #) &]; modEPerfQ[1] = True; modEPerfQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], modEPerfQ]
Showing 1-5 of 5 results.