cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A241405 Sum of modified exponential divisors: if n = Product p_i^r_i then me-sigma(x) = Product (sum p_i^s_i such that s_i+1 divides r_i+1).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144, 72, 110, 74, 114, 104, 100, 96, 168, 80
Offset: 1

Views

Author

Andrew Lelechenko, May 06 2014

Keywords

Comments

The modified exponential divisors of a number n = product p_i^r_i are all numbers of the form product p_i^s_i such that s_i+1 divides r_i+1 for each i.
The concept of modified exponential divisors simplifies combinatorial problems on the sum of exponential divisors A051377 such as a search of e-perfect numbers. Each primitive e-perfect number A054980 corresponds to a unique me-perfect number of smaller magnitude.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e+1, p^(#-1)&]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A241405(n) = {my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1)))}

Formula

a(n / A007947(n)) = A051377(n).
Multiplicative with a(p^a) = sum p^b such that b+1 divides a+1.

Extensions

More terms from Antti Karttunen, Nov 23 2017
Incorrect comment removed by Amiram Eldar, Dec 14 2024

A220218 Numbers where all exponents in its prime factorization are one less than a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Keywords

Comments

Sequence has positive density, between 0.83 and 0.89; probably about 0.87951.
The numbers of terms not exceeding 10^k, for k=1,2,..., are 9, 90, 880, 8796, 87956, 879518, 8795126, 87951173, 879511794, ... The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^3 + Sum_{q prime >= 5} (p-1)/p^q) = 0.87951176583716527413... - Amiram Eldar, Mar 20 2021
Numbers whose sets of unitary divisors (A077610) and modified exponential divisors (A379027) coincide. - Amiram Eldar, Dec 14 2024

Crossrefs

Apart from the first term, a subsequence of A096432.

Programs

  • Haskell
    a220218 n = a220218_list !! (n-1)
    a220218_list = 1 : filter
                   (all (== 1) . map (a010051' . (+ 1)) . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 30 2015
  • Mathematica
    Select[Range[100],AllTrue[Transpose[FactorInteger[#]][[2]]+1,PrimeQ]&] (* Harvey P. Dale, Sep 29 2014 *)
  • PARI
    is(n)=vecmin(apply(n->isprime(n+1),factor(max(n,2))[,2])) \\ Charles R Greathouse IV, Dec 07 2012
    

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A379028 The number of modified exponential divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

If the prime factorization of n is Product_{i} p_i^e_i, then the modified exponential divisors of n are all the divisors of n that are of the form Product_{i} p_i^b_i such that 1 + b_i | 1 + e_i for all i.
The sum of these divisors is A241405(n).

Crossrefs

Row lengths of A379027.
Cf. A241405.
Similar sequences: A000005 (all divisors), A049419 (exponential), A037445 (infinitary), A034444 (unitary), A286324 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> numdiv(x+1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = d(e+1), where d(k) is the number of divisors of k (A000005).
Showing 1-4 of 4 results.