cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A129575 Exponential abundant numbers: integers k for which A126164(k) > k, or equivalently for which A051377(k) > 2k.

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 4900, 6084, 6300, 7056, 8100, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 25200, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 39600
Offset: 1

Views

Author

Ant King, Apr 28 2007

Keywords

Comments

There are only 52189 exponential abundant numbers less than 50 million, which suggests that these account for approximately 0.1% of all integers.
Includes 36*m for all m coprime to 6 that are not squarefree. - Robert Israel, Feb 19 2019
The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 0.001043673..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, Sep 02 2022

Examples

			The third integer that is exceeded by its proper exponential divisor sum is 3600. Hence a(3) = 3600.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)  local L,m,i,j;
      L:= ifactors(n)[2];
      m:= nops(L);
      mul(add(L[i][1]^j, j=numtheory:-divisors(L[i][2])),i=1..m)>2*n
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Feb 19 2019
  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];properexponentialdivisorsum[k_]:=Plus@@ExponentialDivisors[k]-k;Select[Range[5 10^4],properexponentialdivisorsum[ # ]># &]
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[40000], esigma[#] > 2*# &] (* Amiram Eldar, May 06 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, sumdiv(f[i, 2], d, f[i, 1]^d)) > 2*k;} \\ Amiram Eldar, May 06 2025

A321147 Odd exponential abundant numbers: odd numbers k whose sum of exponential divisors A051377(k) > 2*k.

Original entry on oeis.org

225450225, 385533225, 481583025, 538472025, 672624225, 705699225, 985646025, 1121915025, 1150227225, 1281998025, 1566972225, 1685513025, 1790559225, 1826280225, 2105433225, 2242496025, 2466612225, 2550755025, 2679615225, 2930852925, 2946861225, 3132081225
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2018

Keywords

Comments

From Amiram Eldar, Jun 08 2020: (Start)
Exponential abundant numbers that are odd are relatively rare: there are 235290 even exponential abundant number smaller than the first odd term, i.e., a(1) = A129575(235291).
Odd exponential abundant numbers k such that k-1 or k+1 is also exponential abundant number exist (e.g. (73#/5#)^2-1 and (73#/5#)^2 are both exponential abundant numbers, where prime(k)# = A002110(k)). Which pair is the least?
The least exponential abundant number that is coprime to 6 is (31#/3#)^2 = 1117347505588495206025. In general, the least exponential abundant number that is coprime to A002110(k) is (A007708(k+1)#/A002110(k))^2. (End)
The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 5.29...*10^(-9), where f(n) = (4/(Pi^2*n))*Product_{prime p|n}(p/(p+1)) if n is odd and 0 otherwise. - Amiram Eldar, Sep 02 2022

Examples

			225450225 is in the sequence since it is odd and A051377(225450225) = 484323840 > 2 * 225450225.
		

Crossrefs

The exponential version of A005231.
The odd subsequence of A129575.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s={};Do[If[esigma[n]>2n,AppendTo[s,n]],{n,1,10^10,2}]; s

A328134 Exponential highly abundant numbers: numbers m such that esigma(m) > esigma(k) for all k < m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 12, 16, 18, 20, 28, 36, 52, 60, 68, 72, 84, 92, 100, 124, 132, 140, 144, 180, 244, 252, 300, 324, 360, 396, 468, 588, 612, 684, 828, 900, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

The exponential version of A002093.

Examples

			The first 10 values of esigma(k) for k = 1 to 10 are 1, 2, 3, 6, 5, 6, 7, 10, 12, 10. The record values are reached for 1, 2, 3, 4, 7, 8, 9.
		

Crossrefs

Cf. A002093, A051377, A285614 (unitary), A292983 (bi-unitary), A327634 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; s = {}; em = 0; Do[e = esigma[n]; If[e > em, em = e; AppendTo[s, n]], {n, 1, 3000}]; s

A307042 Partial sums of the exponential divisors sum function: Sum_{k=1..n} esigma(k), where esigma is A051377.

Original entry on oeis.org

1, 3, 6, 12, 17, 23, 30, 40, 52, 62, 73, 91, 104, 118, 133, 155, 172, 196, 215, 245, 266, 288, 311, 341, 371, 397, 427, 469, 498, 528, 559, 593, 626, 660, 695, 767, 804, 842, 881, 931, 972, 1014, 1057, 1123, 1183, 1229, 1276, 1342, 1398, 1458, 1509, 1587, 1640
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Accumulate[Array[esigma, 60]] (* after Jean-François Alcover at A051377 *)

Formula

a(n) ~ B * n^2, where B = 0.5682854937... (A275480).

A328135 Exponential 3-abundant numbers: numbers m such that esigma(m) >= 3m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

901800900, 1542132900, 1926332100, 2153888100, 2690496900, 2822796900, 3942584100, 4487660100, 4600908900, 5127992100, 6267888900, 6742052100, 7162236900, 7305120900, 8421732900, 8969984100, 9866448900, 10203020100, 10718460900, 11723411700, 11787444900, 12528324900
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Aiello et al. found bounds on e-multiperfect numbers, i.e., numbers m such that esigma(m) = k * m for k > 2: 2 * 10^7 for k = 3, and 10^85, 10^320, and 10^1210 for k = 4, 5, and 6. The data of this sequence raise the bound for exponential 3-perfect numbers to 3 * 10^10.
The least odd term is (59#/2)^2 = 924251841031287598942273821762233522616225. The least term which is coprime to 6 is (239#/6)^2 = 3.135... * 10^190.
The least exponential 4-abundant number (esigma(m) >= 4m) is (31#)^2 = 40224510201185827416900. In general, the least exponential k-abundant number (esigma(m) >= k*m), for k > 2, is (A002110(A072986(k)))^2.
The asymptotic density of this sequence is Sum_{n>=1} f(A383699(n)) = 1.325...*10^(-9), where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, May 06 2025

Crossrefs

Subsequence of A129575.
A383699 is a subsequence.
Cf. A023197, A307112, A285615 (unitary), A293187 (bi-unitary), A300664 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^10], esigma[#] >= 3 # &]

A307043 Numbers n such that A307042(n) = Sum_{k=1..n} esigma(k) is divisible by n, where esigma(k) is sum of exponential divisors of k (A051377).

Original entry on oeis.org

1, 3, 4, 8, 13, 78, 94, 481, 511, 4819, 13557, 23083, 84245, 204744, 562243, 591105, 614339, 617675, 656263, 1545716, 6370802, 34882737, 534034248, 601990019, 1153304776, 2064184733, 3570196547, 10572032882
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Comments

The exponential version of A056550.
The corresponding quotients are 1, 2, 3, 5, 8, 45, ... (see the link for more values).

Examples

			3 is in the sequence since esigma(1) + esigma(2) + esigma(3) = 1 + 2 + 3 = 6 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; seq={};s = 0; Do[s = s + esigma [n]; If[Divisible[s,n], AppendTo[seq,n]], {n, 1, 10^6}]; seq (* after Jean-François Alcover at A051377 *)

A322887 Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.

Original entry on oeis.org

1, 1, 3, 6, 5, 7, 0, 9, 8, 7, 4, 9, 3, 6, 1, 3, 9, 0, 8, 6, 5, 2, 0, 7, 3, 1, 5, 2, 3, 8, 3, 8, 3, 2, 5, 9, 3, 4, 4, 8, 8, 0, 9, 0, 1, 8, 6, 3, 9, 5, 7, 2, 7, 6, 7, 8, 9, 0, 5, 2, 6, 5, 4, 4, 3, 1, 6, 2, 3, 9, 7, 2, 0, 3, 1, 5, 1, 5, 2, 8, 8, 3, 6, 8, 7, 6, 1, 3, 9, 2, 7, 2, 7, 4, 8, 9, 8, 5, 5, 2, 6, 2, 1, 9, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2018

Keywords

Examples

			1.13657098749361390865207315238383259344880901863957...
		

Crossrefs

Cf. A013661 (all divisors), A051377.

Programs

  • PARI
    default(realprecision, 120); default(parisize, 2000000000);
    my(kmax = 135); prodeulerrat(1 + (1 - 1/p) * sum(k = 1, kmax, 1/(p^(3*k)-p^k))) \\ Amiram Eldar, Mar 09 2024 (The calculation takes a few minutes.)

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).
Equals Product_{p prime} (1 + (1 - 1/p) * Sum_{k>=1} 1/(p^(3*k)-p^k)).

Extensions

a(7)-a(22) from Jon E. Schoenfield, Dec 30 2018
More terms from Amiram Eldar, Mar 09 2024

A357014 Numbers whose sum of exponential divisors (A051377) is odd.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149
Offset: 1

Views

Author

Amiram Eldar, Sep 09 2022

Keywords

Comments

Includes all the odd squarefree numbers (A056911). First differs from this sequence at n = 34.
Equivalently, the odd terms of A197680, i.e., odd numbers with an odd number of exponential divisors (A049419).
The asymptotic density of this sequence is 0.409797... (A357017).

Examples

			1 is a term since A051377(1) = 1 is odd.
3 is a term since A051377(3) = 3 is odd.
		

Crossrefs

Subsequence of A197680.
Subsequences: A056911, A357015.
Similar sequences: A000079 (numbers with an odd sum of unitary divisors), A028982 (numbers with an odd sum of divisors).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[150], OddQ[esigma[#]] &]

A348961 Exponential harmonic (or e-harmonic) numbers of type 1: numbers k such that esigma(k) | k * d_e(k), where d_e(k) is the number of exponential divisors of k (A049419) and esigma(k) is their sum (A051377).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

First differs from A005117 at n = 24, from A333634 and A348499 at n = 47, and from A336223 at n = 63.
Sándor (2006) proved that all the squarefree numbers are e-harmonic of type 1, and that an e-perfect number (A054979) is a term of this sequence if and only if at least one of the exponents in its prime factorization is not a perfect square.
Since all the e-perfect numbers are products of a primitive e-perfect number (A054980) and a coprime squarefree number, and all the known primitive e-perfect numbers have a nonsquare exponent in their prime factorizations, there is no known e-perfect number that is not in this sequence.

Examples

			3 is a term since esigma(3) = 3, 3 * d_e(3) = 3 * 1, so esigma(3) | 3 * d_e(3).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ]

A328120 Exponential superperfect numbers (or e-superperfect numbers): numbers m such that esigma(esigma(m)) = 2m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

9, 12, 45, 60, 63, 84, 99, 117, 132, 153, 156, 171, 204, 207, 228, 261, 270, 276, 279, 315, 333, 348, 369, 372, 387, 420, 423, 444, 477, 492, 495, 516, 531, 549, 564, 585, 603, 636, 639, 657, 660, 693, 708, 711, 732, 747, 765, 780, 801, 804, 819, 852, 855, 873
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Hanumanthachari et al. proved that:
1) The only e-superperfect number of the form p^q with p and q primes is 9 = 3^2.
2) If p prime, m squarefree coprime to m with gcd(p+1, m) > 1 then p^2 * m is e-superperfect only if p = 2.
3) If k is squarefree coprime to esigma(m) then m*k is e-superperfect if and only if m is e-superperfect.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019279.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 2n; Select[Range[1000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 2*k; \\ Amiram Eldar, Jan 09 2025

Formula

9 is in the sequence since esigma(9) = 12 and esigma(12) = 18 = 2*9.
Showing 1-10 of 69 results. Next