cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A348275 Odd noninfinitary abundant numbers: the odd terms of A348274.

Original entry on oeis.org

99225, 1091475, 1289925, 1334025, 1576575, 1686825, 1715175, 1863225, 1885275, 2027025, 2061675, 2282175, 2304225, 2395575, 2401245, 2436525, 2480625, 2650725, 2723175, 2789325, 2877525, 2962575, 3031875, 3075975, 3132675, 3185325, 3186225, 3296475, 3353805, 3501225
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The number of terms below 10^k, for k = 5, 6, ..., are 1, 113, 630, 7771, 73685, ... Apparently this sequence has an asymptotic density 0.000007...

Examples

			99225 is a term since A348271(99225) = 107207 > 99225.
		

Crossrefs

Cf. A348271.
Subsequence of A005231 and A348274.
Similar sequences: A094889, A127666, A129485, A293186, A321147.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[1, 2*10^6, 2], s[#] > # &]

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A328135 Exponential 3-abundant numbers: numbers m such that esigma(m) >= 3m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

901800900, 1542132900, 1926332100, 2153888100, 2690496900, 2822796900, 3942584100, 4487660100, 4600908900, 5127992100, 6267888900, 6742052100, 7162236900, 7305120900, 8421732900, 8969984100, 9866448900, 10203020100, 10718460900, 11723411700, 11787444900, 12528324900
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Aiello et al. found bounds on e-multiperfect numbers, i.e., numbers m such that esigma(m) = k * m for k > 2: 2 * 10^7 for k = 3, and 10^85, 10^320, and 10^1210 for k = 4, 5, and 6. The data of this sequence raise the bound for exponential 3-perfect numbers to 3 * 10^10.
The least odd term is (59#/2)^2 = 924251841031287598942273821762233522616225. The least term which is coprime to 6 is (239#/6)^2 = 3.135... * 10^190.
The least exponential 4-abundant number (esigma(m) >= 4m) is (31#)^2 = 40224510201185827416900. In general, the least exponential k-abundant number (esigma(m) >= k*m), for k > 2, is (A002110(A072986(k)))^2.
The asymptotic density of this sequence is Sum_{n>=1} f(A383699(n)) = 1.325...*10^(-9), where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, May 06 2025

Crossrefs

Subsequence of A129575.
A383699 is a subsequence.
Cf. A023197, A307112, A285615 (unitary), A293187 (bi-unitary), A300664 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^10], esigma[#] >= 3 # &]

A333950 Odd recursive abundant numbers: odd numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11025, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 17325, 18585, 19215, 19635, 20475, 21105, 21945, 22365, 22995, 23205, 24255, 24885, 25935, 26145, 26565, 26775
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			1575 is a term since it is odd and A333926(1575) = 3224 > 2 * 1575.
		

Crossrefs

Intersection of A005408 and A333928.
Cf. A333926.
Analogous sequences: A005231, A094889 (nonunitary), A129485 (unitary), A127666 (infinitary), A293186 (bi-unitary), A321147 (exponential).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[2*Range[15000] + 1, recDivSum[#] > 2*# &]

A360526 Odd numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A112643, A129485, A249263 at n = 46: a(46) = 165165 is not a term of these sequences.

Examples

			15015 is a term since A360522(15015) = 32256 > 2*15015.
		

Crossrefs

Cf. A360522.
Subsequence of A005101, A005231 and A360525.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1, 10^5, 2], q]
  • PARI
    isab(n) = { my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}
    is(n) = n%2 && isab(n);

A339936 Odd coreful abundant numbers: the odd terms of A308053.

Original entry on oeis.org

99225, 165375, 231525, 297675, 496125, 694575, 826875, 893025, 1091475, 1157625, 1225125, 1289925, 1488375, 1620675, 1686825, 1819125, 1885275, 2083725, 2149875, 2282175, 2480625, 2546775, 2679075, 2811375, 2877525, 3009825, 3075975, 3142125, 3274425, 3472875
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

The asymptotic density of this sequence is Sum_{n>=1} f(A356871(n)) = 9.1348...*10^(-6), where f(n) = (4/(Pi^2*n))*Product_{prime p|n}(p/(p+1)) if n is odd and 0 otherwise. - Amiram Eldar, Sep 02 2022

Examples

			99225 is a term since it is odd and the sum of its coreful divisors is A057723(99225) = 201600 > 2 * 99225.
		

Crossrefs

Intersection of A005408 and A308053.
Subsequence of A321147.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1, 10^6, 2], s[#] > 2*# &]

A339938 Odd non-coreful abundant numbers: the odd terms of A308127.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 75075, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 105105
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

First differs from A112643, A129485 and A249263 at n = 28.

Examples

			15015 is a term since it is odd and the sum of its non-coreful divisors is A308135(15015) = 17241 > 15015.
		

Crossrefs

Intersection of A005408 and A308127.
Cf. A308135.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Select[Range[1, 10^5, 2], s[#] > # &]

A348605 Odd nonexponential abundant numbers: odd numbers k such that A160135(k) > k.

Original entry on oeis.org

8505, 10395, 12285, 15015, 16065, 17955, 19635, 21735, 21945, 23205, 25515, 25935, 26565, 28875, 31185, 31395, 33495, 33915, 34125, 35805, 36855, 39585, 41055, 42315, 42735, 45885, 47355, 48195, 49665, 50505, 51765, 53865, 54285, 55965, 56595, 58695, 61215, 64155
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The odd terms of A348604.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 1, 51, 360, 4117, 39803, 418663, 4099004, ... Apparently this sequence has an asymptotic density 0.0004...

Examples

			8505 is a term since A160135(8505) = 8862 > 8505.
		

Crossrefs

Cf. A160135.
Subsequence of A005231 and A348604.
Similar sequences: A094889, A127666, A129485, A293186, A321147, A348275.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 65000, 2], q]

A379031 Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

First differs from its subsequences A112643 and A249263 at n = 51: a(51) = 195195 is not a term of these two sequences.
First differs from its subsequence A129485 at n = 363: a(363) = 2537535 is not a term of A129485.
First differs from A339938 at n = 28: A339938(28) = 75075 is not a term of this sequence.
First differs from A360526 at n = 46: A360526(46) = 165165 is not a term of this sequence.

Crossrefs

Intersection of A005408 and A379029.
Subsequence of A005231.
Subsequences: A112643, A129485, A249263.
Cf. A241405.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ]
  • PARI
    is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k);

A380932 Odd numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

322245, 590205, 874665, 966735, 1934415, 2900205, 3224025, 3378375, 3869775, 4729725, 6081075, 6449625, 6818175, 7740495, 8783775, 8906625, 9029475, 9889425, 10135125, 10961685, 11609325, 11821425, 12900825, 13378365, 14189175, 15049125, 15481935, 15909075, 16253055
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

The odd terms in A380929.
Analogous to odd abundant numbers (A005231) with A380845 instead of A000203.

Examples

			322245 is a term since it is odd, and A380845(322245) = 679582 > 2 * 322245 = 644490.
		

Crossrefs

Intersection of A005408 and A380929.
Subsequence of A005231.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1,10^6,2], q]
  • PARI
    isok(k) = if(!(k % 2), 0, my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k);
Showing 1-10 of 13 results. Next