cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323333 The Euler phi function values of the powerful numbers, A000010(A001694(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 20, 18, 16, 12, 42, 32, 24, 54, 40, 36, 110, 100, 64, 48, 156, 84, 80, 72, 120, 162, 128, 96, 272, 108, 294, 342, 168, 160, 144, 252, 220, 200, 256, 506, 192, 500, 216, 360, 312, 486, 336, 320, 812, 288, 240, 930, 440, 324, 400, 512, 660, 600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Murata's constant Product_{p prime}(1 + 1/(p-1)^2) (A065485).
Sequence is injective: no value occurs more than once. - Amiram Eldar and Antti Karttunen, Sep 30 2019

Crossrefs

Cf. A000010, A001694, A002618 (a subsequence), A065485, A082695, A112526, A323332.

Programs

  • Mathematica
    EulerPhi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after Harvey P. Dale at A001694 *)
  • PARI
    lista(nn) = apply(x->eulerphi(x), select(x->ispowerful(x), vector(nn, k, k))); \\ Michel Marcus, Jan 11 2019

A371413 Dedekind psi function applied to the cubefull numbers (A036966).

Original entry on oeis.org

1, 12, 24, 36, 48, 96, 108, 150, 192, 432, 324, 384, 392, 864, 768, 750, 1296, 972, 1728, 1800, 1536, 2592, 1452, 3456, 3888, 3600, 3072, 2916, 2366, 2744, 5184, 4704, 3750, 5400, 6912, 7776, 7200, 6144, 5202, 9000, 10368, 9408, 11664, 8748, 7220, 13824, 15552
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323332, A371412, A371415.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; Join[{1}, psi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
    (* or *)
    f[n_] := Module[{f = FactorInteger[n], p, e}, If[n == 1, 1, p = f[[;;, 1]]; e = f[[;;, 2]]; If[Min[e] > 2, Times @@ ((p+1) * p^(e-1)), Nothing]]]; Array[f, 20000]
  • PARI
    dedpsi(f) = prod(i = 1, #f~, (f[i, 1] + 1) * f[i, 1]^(f[i, 2]-1));
    lista(max) = {my(f); print1(1, ", "); for(k = 2, max, f = factor(k); if(vecmin(f[, 2]) > 2, print1(dedpsi(f), ", "))); }

Formula

a(n) = A001615(A036966(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p^2-1)*p)) = 1.231291... (A065487).

A371415 Dedekind psi function applied to the cubefull exponentially odd numbers (A335988).

Original entry on oeis.org

1, 12, 36, 48, 150, 192, 432, 324, 392, 768, 1728, 1800, 1452, 3888, 3072, 2916, 2366, 4704, 3750, 5400, 6912, 7200, 5202, 7220, 15552, 12288, 14112, 17424, 18816, 12696, 27648, 28800, 19208, 34992, 28392, 26244, 25230, 45000, 64800, 30752, 48600, 62208, 49152
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323332, A371413, A371414.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; Join[{1}, psi /@ Select[Range[40000], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • PARI
    dedpsi(f) = prod(i = 1, #f~, (f[i, 1] + 1) * f[i, 1]^(f[i, 2]-1));
    lista(max) = {my(f, ans); print1(1, ", "); for(k = 2, max, f = factor(k); ans = 1; for (i = 1, #f~, if (f[i, 2] == 1 || !(f[i, 2] % 2), ans = 0; break)); if(ans, print1(dedpsi(f), ", ")));}

Formula

a(n) = A001615(A335988(n)).
Sum_{n>=1} 1/a(n) = (Pi^4/36) * Product_{p prime} (1 - (2*p-1)/p^3) = A098198 * A065464 = 1.158760974549073218921828... .

A374457 The Dedekind psi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 12, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 48, 42, 36, 30, 72, 32, 48, 48, 54, 48, 38, 60, 56, 72, 42, 96, 44, 72, 48, 72, 54, 108, 72, 96, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 144, 90
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to psi: A000082, A033196, A323332, A371413, A371415.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374456.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]+1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A001615(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 / A065463^2 = 2.01515877170903249510... .
Showing 1-4 of 4 results.