A371413 Dedekind psi function applied to the cubefull numbers (A036966).
1, 12, 24, 36, 48, 96, 108, 150, 192, 432, 324, 384, 392, 864, 768, 750, 1296, 972, 1728, 1800, 1536, 2592, 1452, 3456, 3888, 3600, 3072, 2916, 2366, 2744, 5184, 4704, 3750, 5400, 6912, 7776, 7200, 6144, 5202, 9000, 10368, 9408, 11664, 8748, 7220, 13824, 15552
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; Join[{1}, psi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]] (* or *) f[n_] := Module[{f = FactorInteger[n], p, e}, If[n == 1, 1, p = f[[;;, 1]]; e = f[[;;, 2]]; If[Min[e] > 2, Times @@ ((p+1) * p^(e-1)), Nothing]]]; Array[f, 20000]
-
PARI
dedpsi(f) = prod(i = 1, #f~, (f[i, 1] + 1) * f[i, 1]^(f[i, 2]-1)); lista(max) = {my(f); print1(1, ", "); for(k = 2, max, f = factor(k); if(vecmin(f[, 2]) > 2, print1(dedpsi(f), ", "))); }